論文の概要: DFGNN: Dual-frequency Graph Neural Network for Sign-aware Feedback
- arxiv url: http://arxiv.org/abs/2405.15280v1
- Date: Fri, 24 May 2024 07:07:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 15:50:32.679552
- Title: DFGNN: Dual-frequency Graph Neural Network for Sign-aware Feedback
- Title(参考訳): DFGNN:手話認識フィードバックのためのデュアル周波数グラフニューラルネットワーク
- Authors: Yiqing Wu, Ruobing Xie, Zhao Zhang, Xu Zhang, Fuzhen Zhuang, Leyu Lin, Zhanhui Kang, Yongjun Xu,
- Abstract要約: 本稿では,周波数フィルタの観点から正負のフィードバックをモデル化する新しいモデルを提案する。
実世界のデータセットについて広範な実験を行い、提案モデルの有効性を実証する。
- 参考スコア(独自算出の注目度): 51.72177873832969
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The graph-based recommendation has achieved great success in recent years. However, most existing graph-based recommendations focus on capturing user preference based on positive edges/feedback, while ignoring negative edges/feedback (e.g., dislike, low rating) that widely exist in real-world recommender systems. How to utilize negative feedback in graph-based recommendations still remains underexplored. In this study, we first conducted a comprehensive experimental analysis and found that (1) existing graph neural networks are not well-suited for modeling negative feedback, which acts as a high-frequency signal in a user-item graph. (2) The graph-based recommendation suffers from the representation degeneration problem. Based on the two observations, we propose a novel model that models positive and negative feedback from a frequency filter perspective called Dual-frequency Graph Neural Network for Sign-aware Recommendation (DFGNN). Specifically, in DFGNN, the designed dual-frequency graph filter (DGF) captures both low-frequency and high-frequency signals that contain positive and negative feedback. Furthermore, the proposed signed graph regularization is applied to maintain the user/item embedding uniform in the embedding space to alleviate the representation degeneration problem. Additionally, we conduct extensive experiments on real-world datasets and demonstrate the effectiveness of the proposed model. Codes of our model will be released upon acceptance.
- Abstract(参考訳): グラフベースのレコメンデーションは近年大きな成功を収めています。
しかし、既存のグラフベースのリコメンデーションのほとんどは、肯定的なエッジ/フィードバックに基づいてユーザの好みをキャプチャすることに焦点を当てている一方で、現実のレコメンデーションシステムに広く存在する負のエッジ/フィードバック(例えば、嫌悪、低評価)を無視している。
グラフベースのレコメンデーションでネガティブなフィードバックを利用する方法はまだ検討されていない。
そこで本研究では,(1)既存のグラフニューラルネットワークは負のフィードバックをモデル化するのに適していないことを示す。
2)グラフベースのレコメンデーションは,表現退化問題に悩まされる。
この2つの観測結果に基づいて,周波数フィルタの観点から正と負のフィードバックをモデル化する新しいモデルを提案する。
具体的には、DFGNNにおいて、設計された二周波グラフフィルタ(DGF)は、正および負のフィードバックを含む低周波信号と高周波信号の両方をキャプチャする。
さらに, 提案した符号付きグラフ正規化を適用し, ユーザ/イム埋め込みの均一性を保ち, 表現退化問題を緩和する。
さらに、実世界のデータセットに関する広範な実験を行い、提案モデルの有効性を実証する。
私たちのモデルのコードは受け入れ次第リリースされます。
関連論文リスト
- ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
我々はAnomaly-Denoized Autoencoders for Graph Anomaly Detection (ADA-GAD)という新しいフレームワークを導入する。
第1段階では,異常レベルを低減したグラフを生成する学習自由な異常化拡張法を設計する。
次の段階では、デコーダは元のグラフで検出するために再訓練される。
論文 参考訳(メタデータ) (2023-12-22T09:02:01Z) - Adaptive spectral graph wavelets for collaborative filtering [5.547800834335382]
協調フィルタリングはレコメンデーションシステムにおいて一般的なアプローチであり、その目的はパーソナライズされた項目の提案を提供することである。
本稿では,暗黙的なフィードバックデータに対するスペクトルグラフウェーブレット協調フィルタリングフレームワークを提案する。
グラフの局所的および大域的構造を捉えることに加えて、我々の手法は空間的およびスペクトル的領域におけるグラフ信号の局所化をもたらす。
論文 参考訳(メタデータ) (2023-12-05T22:22:25Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
本稿では,6つの人気グラフと最近のグラフ推薦モデルの結果を再現するコードを提案する。
これらのグラフモデルと従来の協調フィルタリングモデルを比較する。
ユーザの近所からの情報フローを調べることにより,データセット構造における内在的特徴にどのようなモデルが影響するかを同定することを目的とする。
論文 参考訳(メタデータ) (2023-08-01T09:31:44Z) - Inhomogeneous graph trend filtering via a l2,0 cardinality penalty [10.62929792074829]
グラフ信号の断片的スムーズさを推定するために,$ell_2,0$-norm Penalized Graph Trend Filtering (GTF) モデルを提案する。
提案したGTFモデルは,エッジセットが大きいデータセットに対して,既存のモデルよりも効率的に解けることを示す。
論文 参考訳(メタデータ) (2023-04-11T13:46:59Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
グラフ信号解析と処理の利点を享受する統合グラフ信号サンプリングフレームワークを提案する。
キーとなる考え方は、各ユーザのアイテムのレーティングをアイテムイットグラフの頂点上の関数(信号)に変換することである。
オンライン設定では、グラフフーリエ領域における連続ランダムガウス雑音を考慮したベイズ拡張(BGS-IMC)を開発する。
論文 参考訳(メタデータ) (2023-02-08T08:17:43Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
最近の研究では、グラフニューラルネットワークは弱く、小さな摂動によって簡単に騙されることが示されている。
本研究では,グラフインジェクションアタック(Graph Injection Attack)という,新興だが重要な攻撃に焦点を当てる。
本稿では,グラフデータとモデルの協調的同好性増強によるGIAに対する汎用防衛フレームワークCHAGNNを提案する。
論文 参考訳(メタデータ) (2022-11-15T11:44:31Z) - SiReN: Sign-Aware Recommendation Using Graph Neural Networks [6.739000442575012]
我々は,GNNモデルに基づく新しいサイン・アウェア・レコメンデータシステムSiReNを提案する。
SiReNは、最先端のNE支援レコメンデーションメソッドを一貫して上回っている。
論文 参考訳(メタデータ) (2021-08-19T15:07:06Z) - Graph Trend Networks for Recommendations [34.06649831739749]
推薦システムの鍵は、ユーザーが過去のオンライン行動に基づいてアイテムと対話する可能性を予測することである。
これらのユーザ-イテム相互作用を利用するために、ユーザ-イテム相互作用をユーザ-イテム二部グラフとして考慮する取り組みが増えている。
彼らの成功にもかかわらず、既存のGNNベースのレコメンデーターシステムは、信頼できない振る舞いによって引き起こされる相互作用を見逃している。
本稿では,グラフトレンドネットワークによるレコメンデーション(GTN)を提案する。
論文 参考訳(メタデータ) (2021-08-12T06:09:18Z) - Relation-aware Graph Attention Model With Adaptive Self-adversarial
Training [29.240686573485718]
本稿では,不均一なマルチリレーショナルグラフにおける関係予測タスクのエンドツーエンドソリューションについて述べる。
特にパイプライン内の2つのビルディングブロック、すなわちヘテロジニアスグラフ表現学習と負のサンプリングに対処する。
パラメータフリーな負のサンプリング手法であるadaptive self-adversarial (asa) 負のサンプリングを導入する。
論文 参考訳(メタデータ) (2021-02-14T16:11:56Z) - Reinforced Negative Sampling over Knowledge Graph for Recommendation [106.07209348727564]
我々は、高品質なネガティブを探索する強化学習エージェントとして機能する新しい負サンプリングモデル、知識グラフポリシーネットワーク(kgPolicy)を開発した。
kgPolicyは、ターゲットのポジティブなインタラクションからナビゲートし、知識を意識したネガティブなシグナルを適応的に受信し、最終的にはリコメンダをトレーニングする潜在的なネガティブなアイテムを生成する。
論文 参考訳(メタデータ) (2020-03-12T12:44:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。