Addressing Blind Guessing: Calibration of Selection Bias in Multiple-Choice Question Answering by Video Language Models
- URL: http://arxiv.org/abs/2410.14248v1
- Date: Fri, 18 Oct 2024 07:52:22 GMT
- Title: Addressing Blind Guessing: Calibration of Selection Bias in Multiple-Choice Question Answering by Video Language Models
- Authors: Olga Loginova, Oleksandr Bezrukov, Alexey Kravets,
- Abstract summary: Video Language Models (VLMs) are designed to answer complex video-focused questions.
Current benchmarks fail to capture the full reasoning capabilities of VLMs due to selection bias.
This study is the first focused investigation of selection bias in video-to-text LLM-powered models.
- Score: 16.34646723046073
- License:
- Abstract: Evaluating Video Language Models (VLMs) is a challenging task. Due to its transparency, Multiple-Choice Question Answering (MCQA) is widely used to measure the performance of these models through accuracy. However, existing MCQA benchmarks fail to capture the full reasoning capabilities of VLMs due to selection bias, when models disproportionately favor certain answer options based on positional patterns observed during training. In this work, we conduct a comprehensive empirical analysis of several VLM architectures across major datasets designed to assess complex video-focused reasoning. We identify where the bias is most pronounced and demonstrate to what extent model responses reflect genuine understanding of video content and related questions, as opposed to reliance on arbitrary patterns or superficial cues, such as answer position. By decomposing the MCQA task and adapting fairness bias metrics to VLMs, we introduce a post-processing calibration technique BOLD to balance this bias. Our results show that reducing selection bias improves not only debiasing metrics but also overall model performance, including Accuracy and F1 Mean score. Our method, by suppressing "blind guessing", offers a more cost- and time-effective approach to mitigating selection bias compared to existing techniques. This study represents the first focused investigation of selection bias in video-to-text LLM-powered models.
Related papers
- Mitigating Selection Bias with Node Pruning and Auxiliary Options [11.835002896308545]
Large language models (LLMs) often show unwarranted preference for certain choice options when responding to multiple-choice questions.
Previous solutions utilized debiasing methods to adjust the model's input and/or output.
Our work, in contrast, investigates the model's internal representation of the selection bias.
arXiv Detail & Related papers (2024-09-27T15:53:54Z) - Evaluating Nuanced Bias in Large Language Model Free Response Answers [8.775925011558995]
We identify several kinds of nuanced bias in free text that cannot be identified by multiple choice tests.
We present a semi-automated pipeline for detecting these types of bias by first eliminating answers that can be automatically classified as unbiased.
arXiv Detail & Related papers (2024-07-11T19:58:13Z) - Selectively Answering Visual Questions [14.867972139262907]
Large multi-modal models (LMMs) have emerged with the capacity to perform vision tasks with unprecedented accuracy.
We perform the first in-depth analysis of calibration methods and metrics for visual question answering (VQA) with in-context learning LMMs.
We show that the likelihood score of visually grounded models is better than in their text-only counterparts for in-context learning.
arXiv Detail & Related papers (2024-06-03T04:28:10Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - Mitigating Bias for Question Answering Models by Tracking Bias Influence [84.66462028537475]
We propose BMBI, an approach to mitigate the bias of multiple-choice QA models.
Based on the intuition that a model would lean to be more biased if it learns from a biased example, we measure the bias level of a query instance.
We show that our method could be applied to multiple QA formulations across multiple bias categories.
arXiv Detail & Related papers (2023-10-13T00:49:09Z) - Large Language Models Are Not Robust Multiple Choice Selectors [117.72712117510953]
Multiple choice questions (MCQs) serve as a common yet important task format in the evaluation of large language models (LLMs)
This work shows that modern LLMs are vulnerable to option position changes due to their inherent "selection bias"
We propose a label-free, inference-time debiasing method, called PriDe, which separates the model's prior bias for option IDs from the overall prediction distribution.
arXiv Detail & Related papers (2023-09-07T17:44:56Z) - Large Language Models Sensitivity to The Order of Options in
Multiple-Choice Questions [5.187383020960245]
Large Language Models (LLMs) have demonstrated remarkable capabilities in various NLP tasks.
Previous works have shown these models are sensitive towards prompt wording, and few-shot demonstrations and their order.
This paper investigates sensitivity of LLMs towards the order of options in multiple-choice questions.
arXiv Detail & Related papers (2023-08-22T14:54:59Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
We propose an effective bias-conflicting scoring method (ECS) to boost the identification accuracy.
We also propose gradient alignment (GA) to balance the contributions of the mined bias-aligned and bias-conflicting samples.
Experiments are conducted on multiple datasets in various settings, demonstrating that the proposed solution can mitigate the impact of unknown biases.
arXiv Detail & Related papers (2023-02-22T14:50:24Z) - Unbiased Math Word Problems Benchmark for Mitigating Solving Bias [72.8677805114825]
Current solvers exist solving bias which consists of data bias and learning bias due to biased dataset and improper training strategy.
Our experiments verify MWP solvers are easy to be biased by the biased training datasets which do not cover diverse questions for each problem narrative of all MWPs.
An MWP can be naturally solved by multiple equivalent equations while current datasets take only one of the equivalent equations as ground truth.
arXiv Detail & Related papers (2022-05-17T06:07:04Z) - Greedy Gradient Ensemble for Robust Visual Question Answering [163.65789778416172]
We stress the language bias in Visual Question Answering (VQA) that comes from two aspects, i.e., distribution bias and shortcut bias.
We propose a new de-bias framework, Greedy Gradient Ensemble (GGE), which combines multiple biased models for unbiased base model learning.
GGE forces the biased models to over-fit the biased data distribution in priority, thus makes the base model pay more attention to examples that are hard to solve by biased models.
arXiv Detail & Related papers (2021-07-27T08:02:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.