論文の概要: LUDVIG: Learning-free Uplifting of 2D Visual features to Gaussian Splatting scenes
- arxiv url: http://arxiv.org/abs/2410.14462v1
- Date: Fri, 18 Oct 2024 13:44:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:25:09.799786
- Title: LUDVIG: Learning-free Uplifting of 2D Visual features to Gaussian Splatting scenes
- Title(参考訳): LUDVIG: ガウス・スプレイティングシーンにおける2次元視覚特徴の学習自由化
- Authors: Juliette Marrie, Romain Ménégaux, Michael Arbel, Diane Larlus, Julien Mairal,
- Abstract要約: 単純で効果的な集約手法が優れた結果をもたらすことを示す。
本手法を汎用DINOv2機能に拡張し,グラフ拡散による3次元シーン形状を統合し,競合セグメンテーションの結果を得る。
- 参考スコア(独自算出の注目度): 39.687526103092445
- License:
- Abstract: We address the task of uplifting visual features or semantic masks from 2D vision models to 3D scenes represented by Gaussian Splatting. Whereas common approaches rely on iterative optimization-based procedures, we show that a simple yet effective aggregation technique yields excellent results. Applied to semantic masks from Segment Anything (SAM), our uplifting approach leads to segmentation quality comparable to the state of the art. We then extend this method to generic DINOv2 features, integrating 3D scene geometry through graph diffusion, and achieve competitive segmentation results despite DINOv2 not being trained on millions of annotated masks like SAM.
- Abstract(参考訳): 本稿では,2次元視覚モデルからガウススプラッティングで表現された3次元シーンまで,視覚的特徴やセマンティックマスクを上昇させる課題に対処する。
一般的な手法は反復的最適化に基づく手法に依存しているのに対し、単純で効果的な集約手法が優れた結果をもたらすことを示す。
Segment Anything (SAM) のセマンティックマスクに応用すると、我々のアップリフトアプローチは、最先端技術に匹敵するセグメンテーション品質をもたらす。
次に,この手法を汎用DINOv2機能に拡張し,グラフ拡散による3次元シーン形状を統合し,SAMのような数百万のアノテートマスクでトレーニングされていないにもかかわらず,競合セグメンテーション結果を達成する。
関連論文リスト
- Is Contrastive Distillation Enough for Learning Comprehensive 3D Representations? [55.99654128127689]
クロスモーダル・コントラスト蒸留は近年,有効3次元表現の学習のために研究されている。
既存の手法は主にモーダリティ共有の特徴に焦点を合わせ、事前学習過程におけるモーダリティ固有の特徴を無視している。
本稿では,これらの欠点に対処する新しいフレームワークCMCRを提案する。
論文 参考訳(メタデータ) (2024-12-12T06:09:49Z) - A Lesson in Splats: Teacher-Guided Diffusion for 3D Gaussian Splats Generation with 2D Supervision [65.33043028101471]
本研究では,ガウスプレートの拡散モデルであるSplatDiffusionを導入し,単一画像から3次元構造を生成する。
既存の方法は決定論的フィードフォワード予測に依存しており、2Dデータからの3D推論の本質的な曖昧さを扱う能力を制限する。
論文 参考訳(メタデータ) (2024-12-01T00:29:57Z) - AugGS: Self-augmented Gaussians with Structural Masks for Sparse-view 3D Reconstruction [9.953394373473621]
スパースビュー3D再構成はコンピュータビジョンにおける大きな課題である。
本研究では,スパース・ビュー3D再構成のための構造マスクを付加した自己拡張型2段ガウス・スプレイティング・フレームワークを提案する。
提案手法は,認識品質における最先端性能と,スパース入力との多視点整合性を実現する。
論文 参考訳(メタデータ) (2024-08-09T03:09:22Z) - Open-Vocabulary 3D Semantic Segmentation with Text-to-Image Diffusion Models [57.37244894146089]
Diff2Sceneは、テキスト画像生成モデルからの凍結表現と、サルエント・アウェアと幾何学的アウェアマスクを併用して、オープンな3次元セマンティックセマンティックセグメンテーションと視覚的グラウンドニングタスクに活用する。
競争ベースラインを上回り、最先端の手法よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2024-07-18T16:20:56Z) - CLIP-GS: CLIP-Informed Gaussian Splatting for Real-time and View-consistent 3D Semantic Understanding [32.76277160013881]
コントラスト言語画像事前学習(CLIP)のセマンティクスをガウススプラッティングに統合するCLIP-GSを提案する。
SACはオブジェクト内の固有の統一意味論を利用して、3Dガウスのコンパクトで効果的な意味表現を学ぶ。
また,3次元モデルから得られた多視点一貫性を利用して,3次元コヒーレント自己学習(3DCS)戦略を導入する。
論文 参考訳(メタデータ) (2024-04-22T15:01:32Z) - Semantic Gaussians: Open-Vocabulary Scene Understanding with 3D Gaussian Splatting [27.974762304763694]
セマンティック・ガウシアン(Semantic Gaussians)は,3次元ガウシアン・スプレイティングをベースとした,新しいオープン語彙シーン理解手法である。
既存の手法とは異なり、様々な2次元意味的特徴を3次元ガウスの新たな意味的構成要素にマッピングする多目的投影手法を設計する。
我々は,高速な推論のために,生の3Dガウスから意味成分を直接予測する3Dセマンティックネットワークを構築した。
論文 参考訳(メタデータ) (2024-03-22T21:28:19Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z) - M$^{3}$3D: Learning 3D priors using Multi-Modal Masked Autoencoders for
2D image and video understanding [5.989397492717352]
M$3$3D ($underlineM$ulti-$underlineM$odal $underlineM$asked $underline3D$) はマルチモーダルマスキングオートエンコーダをベースとする。
我々は,Masked Image Modeling(MIM)とコントラスト学習という,自己教師型学習フレームワークを統合した。
実験の結果、M$3$3D は ScanNet, NYUv2, UCF-101, OR-AR における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2023-09-26T23:52:09Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。