論文の概要: Neural Real-Time Recalibration for Infrared Multi-Camera Systems
- arxiv url: http://arxiv.org/abs/2410.14505v1
- Date: Fri, 18 Oct 2024 14:37:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:24:23.992082
- Title: Neural Real-Time Recalibration for Infrared Multi-Camera Systems
- Title(参考訳): 赤外線マルチカメラシステムのためのニューラルリアルタイムリカレーション
- Authors: Benyamin Mehmandar, Reza Talakoob, Charalambos Poullis,
- Abstract要約: 赤外線マルチカメラシステムのリアルタイム再校正には、学習のない、あるいはニューラルネットワーク技術は存在しない。
動的リアルタイムキャリブレーションが可能なニューラルネットワークに基づく手法を提案する。
- 参考スコア(独自算出の注目度): 2.249916681499244
- License:
- Abstract: Currently, there are no learning-free or neural techniques for real-time recalibration of infrared multi-camera systems. In this paper, we address the challenge of real-time, highly-accurate calibration of multi-camera infrared systems, a critical task for time-sensitive applications. Unlike traditional calibration techniques that lack adaptability and struggle with on-the-fly recalibrations, we propose a neural network-based method capable of dynamic real-time calibration. The proposed method integrates a differentiable projection model that directly correlates 3D geometries with their 2D image projections and facilitates the direct optimization of both intrinsic and extrinsic camera parameters. Key to our approach is the dynamic camera pose synthesis with perturbations in camera parameters, emulating realistic operational challenges to enhance model robustness. We introduce two model variants: one designed for multi-camera systems with onboard processing of 2D points, utilizing the direct 2D projections of 3D fiducials, and another for image-based systems, employing color-coded projected points for implicitly establishing correspondence. Through rigorous experimentation, we demonstrate our method is more accurate than traditional calibration techniques with or without perturbations while also being real-time, marking a significant leap in the field of real-time multi-camera system calibration. The source code can be found at https://github.com/theICTlab/neural-recalibration
- Abstract(参考訳): 現在、赤外線マルチカメラシステムのリアルタイム再校正のための学習不要またはニューラルネットワーク技術は存在しない。
本稿では,リアルタイムかつ高精度なマルチカメラ赤外線システムのキャリブレーションの課題に対処する。
適応性に欠ける従来のキャリブレーション手法と異なり、動的リアルタイムキャリブレーションが可能なニューラルネットワークベースの手法を提案する。
提案手法は,2次元画像投影と直接相関し,内在カメラパラメータと外在カメラパラメータの直接最適化を容易にする,微分可能プロジェクションモデルを統合する。
我々のアプローチの鍵となるのは、カメラパラメータの摂動による動的カメラポーズ合成であり、モデルロバスト性を高めるために現実的な運用課題をエミュレートする。
本稿では,3次元画像の直接2次元投影を利用したマルチカメラシステムと,暗黙的に対応性を確立するためにカラー符号化された投影点を用いた画像ベースシステムを提案する。
厳密な実験により,従来のキャリブレーション手法よりも高精度かつリアルタイムであり,リアルタイムマルチカメラシステムキャリブレーションの分野において大きな飛躍をみせている。
ソースコードはhttps://github.com/theICTlab/neural-recalibrationで確認できる。
関連論文リスト
- Camera Calibration using a Collimator System [5.138012450471437]
本稿では,コリメータシステムを用いたカメラキャリブレーション手法を提案する。
コリメータシステムの光学的幾何に基づいて、目標とカメラの間の相対運動が球運動モデルに一致することを証明した。
カメラキャリブレーションにおいて,複数ビューの閉形式解法と2ビューの最小解法を提案する。
論文 参考訳(メタデータ) (2024-09-30T07:40:41Z) - Joint Spatial-Temporal Calibration for Camera and Global Pose Sensor [0.4143603294943439]
ロボット工学において、モーションキャプチャシステムはローカライズアルゴリズムの精度を測定するために広く利用されている。
これらの機能は、カメラとグローバルポーズセンサーの間で正確で信頼性の高い時空間キャリブレーションパラメータを必要とする。
本研究では,これらのキャリブレーションパラメータを推定する新しい2つの手法を提案する。
論文 参考訳(メタデータ) (2024-03-01T20:56:14Z) - EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
我々は、マーカーレスでホワイトボックスであり、より優れた精度とロバスト性を提供するEasyHeCと呼ばれる手眼校正の新しいアプローチを導入する。
我々は,2つの重要な技術 – レンダリングベースのカメラポーズの最適化と整合性に基づく共同空間探索 – を利用することを提案する。
本評価は,合成および実世界のデータセットにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-02T03:49:54Z) - Towards Nonlinear-Motion-Aware and Occlusion-Robust Rolling Shutter
Correction [54.00007868515432]
既存の手法では、一様速度仮定による補正の精度を推定する上で、課題に直面している。
本稿では,個々の画素の高次補正場を正確に推定する,幾何的回転シャッター(QRS)運動解法を提案する。
提案手法は,Carla-RS,Fastec-RS,BS-RSCの各データセット上で,PSNRの+4.98,+0.77,+4.33を超える。
論文 参考訳(メタデータ) (2023-03-31T15:09:18Z) - Multi-task Learning for Camera Calibration [3.274290296343038]
一対の画像から内在性(主点オフセットと焦点長)と外因性(ベースライン,ピッチ,翻訳)を予測できるユニークな手法を提案する。
カメラモデルニューラルネットワークを用いて3Dポイントを再構成し、再構成の損失を利用してカメラ仕様を得ることにより、この革新的なカメラ投影損失(CPL)法により、所望のパラメータを推定できる。
論文 参考訳(メタデータ) (2022-11-22T17:39:31Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - RGB2Hands: Real-Time Tracking of 3D Hand Interactions from Monocular RGB
Video [76.86512780916827]
本稿では,1台のRGBカメラによる骨格ポーズのモーションキャプチャと手の表面形状をリアルタイムに計測する手法を提案する。
RGBデータの本質的な深さの曖昧さに対処するために,我々は新しいマルチタスクCNNを提案する。
RGBの片手追跡と3D再構築パイプラインの個々のコンポーネントを実験的に検証した。
論文 参考訳(メタデータ) (2021-06-22T12:53:56Z) - Stereo camera system calibration: the need of two sets of parameters [0.0]
ステレオカメラシステムによるシーンの再構築は2段階のプロセスである。
最初は、異なるカメラの画像が一致して、実際に現実世界で再構築されるポイント・ツー・ポイント対応のセットを特定します。
2つの異なるパラメータを推定するためにシステムを2回校正することを提案する。
論文 参考訳(メタデータ) (2021-01-14T17:03:17Z) - Infrastructure-based Multi-Camera Calibration using Radial Projections [117.22654577367246]
パターンベースのキャリブレーション技術は、カメラの内在を個別にキャリブレーションするために使用することができる。
Infrastucture-based calibration techniqueはSLAMやStructure-from-Motionで事前に構築した3Dマップを用いて外部情報を推定することができる。
本稿では,インフラストラクチャベースのアプローチを用いて,マルチカメラシステムをスクラッチから完全にキャリブレーションすることを提案する。
論文 参考訳(メタデータ) (2020-07-30T09:21:04Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
空間校正カメラで撮影した多視点画像から3次元ポーズを復元する手法を提案する。
我々は3次元形状を利用して、入力画像をカメラ視点から切り離したポーズの潜在表現に融合する。
アーキテクチャは、カメラプロジェクション演算子に学習した表現を条件付け、ビュー当たりの正確な2次元検出を生成する。
論文 参考訳(メタデータ) (2020-04-05T12:52:29Z) - Spatiotemporal Camera-LiDAR Calibration: A Targetless and Structureless
Approach [32.15405927679048]
ターゲットレスで構造のないカメラ-DARキャリブレーション法を提案する。
本手法は, 時間的パラメータの初期調整を必要としないような, 閉形式解と非構造束を結合する。
提案手法の精度とロバスト性をシミュレーションおよび実データ実験により実証する。
論文 参考訳(メタデータ) (2020-01-17T07:25:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。