論文の概要: Domain Adaptive Safety Filters via Deep Operator Learning
- arxiv url: http://arxiv.org/abs/2410.14528v1
- Date: Fri, 18 Oct 2024 15:10:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:23:53.595688
- Title: Domain Adaptive Safety Filters via Deep Operator Learning
- Title(参考訳): 深層演算子学習による領域適応型安全フィルタ
- Authors: Lakshmideepakreddy Manda, Shaoru Chen, Mahyar Fazlyab,
- Abstract要約: 本稿では,環境パラメータから対応するCBFへのマッピングを学習する自己教師型深層演算子学習フレームワークを提案する。
動的障害物を含むナビゲーションタスクの数値実験により,本手法の有効性を実証する。
- 参考スコア(独自算出の注目度): 5.62479170374811
- License:
- Abstract: Learning-based approaches for constructing Control Barrier Functions (CBFs) are increasingly being explored for safety-critical control systems. However, these methods typically require complete retraining when applied to unseen environments, limiting their adaptability. To address this, we propose a self-supervised deep operator learning framework that learns the mapping from environmental parameters to the corresponding CBF, rather than learning the CBF directly. Our approach leverages the residual of a parametric Partial Differential Equation (PDE), where the solution defines a parametric CBF approximating the maximal control invariant set. This framework accommodates complex safety constraints, higher relative degrees, and actuation limits. We demonstrate the effectiveness of the method through numerical experiments on navigation tasks involving dynamic obstacles.
- Abstract(参考訳): 制御バリア関数(CBF)を構築するための学習ベースのアプローチは、安全クリティカルな制御システムのためにますます研究されている。
しかしながら、これらの手法は、通常、目に見えない環境に適用した場合、完全な再訓練を必要とし、適応性を制限する。
そこで本研究では,CBFを直接学習するのではなく,環境パラメータから対応するCBFへのマッピングを学習する自己教師型深層演算子学習フレームワークを提案する。
提案手法はパラメトリック偏微分方程式 (PDE) の残余を利用しており、この解は最大制御不変集合を近似するパラメトリックCBFを定義する。
このフレームワークは、複雑な安全性の制約、高い相対度、アクティベーション制限に対応している。
動的障害物を含むナビゲーションタスクの数値実験により,本手法の有効性を実証する。
関連論文リスト
- Pareto Control Barrier Function for Inner Safe Set Maximization Under Input Constraints [50.920465513162334]
入力制約下での動的システムの内部安全集合を最大化するPCBFアルゴリズムを提案する。
逆振り子に対するハミルトン・ヤコビの到達性との比較と,12次元四元数系のシミュレーションにより,その有効性を検証する。
その結果,PCBFは既存の手法を一貫して上回り,入力制約下での安全性を確保した。
論文 参考訳(メタデータ) (2024-10-05T18:45:19Z) - Reinforcement Learning-based Receding Horizon Control using Adaptive Control Barrier Functions for Safety-Critical Systems [14.166970599802324]
最適制御法は、安全クリティカルな問題に対する解決策を提供するが、容易に難解になる。
モデル予測制御を利用した強化学習に基づく回帰水平制御手法を提案する。
我々は、コネクテッド・アンド・オートマチック・ビークルにおける自動マージ制御問題に適用し、本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-03-26T02:49:08Z) - Learning Performance-Oriented Control Barrier Functions Under Complex Safety Constraints and Limited Actuation [5.62479170374811]
制御バリア関数(CBF)は非線形制御系力学を制約するエレガントなフレームワークを提供する。
これらの課題に包括的に対処する,新たな自己教師型学習フレームワークを導入する。
本研究では,2次元ダブルインテグレータ(DI)システムと7次元固定翼航空機システムに対するアプローチを検証する。
論文 参考訳(メタデータ) (2024-01-11T02:51:49Z) - Safe Neural Control for Non-Affine Control Systems with Differentiable
Control Barrier Functions [58.19198103790931]
本稿では,非アフィン制御系における安全クリティカル制御の問題に対処する。
制御バリア関数(CBF)を用いて,状態制約と制御制約の2次コストの最適化を2次プログラムのシーケンス(QP)にサブ最適化できることが示されている。
我々は,高次CBFをニューラル常微分方程式に基づく学習モデルに差分CBFとして組み込んで,非アフィン制御系の安全性を保証する。
論文 参考訳(メタデータ) (2023-09-06T05:35:48Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
本稿では,専門家によるデモンストレーションの部分的な観察から,安全な出力フィードバック制御法を考察する。
まず,安全性を保証する手段として,ロバスト出力制御バリア関数(ROCBF)を提案する。
次に、安全なシステム動作を示す専門家による実証からROCBFを学習するための最適化問題を定式化する。
論文 参考訳(メタデータ) (2021-11-18T23:21:00Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
制御バリア関数(CBF)と制御リアプノフ関数(CLF)は、制御システムの安全性と安定性をそれぞれ強化するための一般的なツールである。
本稿では, CBF と CLF を用いた安全クリティカルコントローラにおいて, モデル不確実性に対処するためのガウスプロセス(GP)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-13T23:08:49Z) - Safe Exploration in Model-based Reinforcement Learning using Control
Barrier Functions [1.005130974691351]
我々は、最小侵襲の安全管理ポリシーを開発するためにCBFの有益な特性を保持する新しいCBFのクラスを開発する。
我々は,これらのlcbfを学習ベースの制御ポリシーの強化に活用し,安全性を保証し,このアプローチを利用して安全な探索フレームワークを開発する方法を示す。
論文 参考訳(メタデータ) (2021-04-16T15:29:58Z) - Reinforcement Learning for Safety-Critical Control under Model
Uncertainty, using Control Lyapunov Functions and Control Barrier Functions [96.63967125746747]
強化学習フレームワークは、CBFおよびCLF制約に存在するモデル不確実性を学ぶ。
RL-CBF-CLF-QPは、安全制約におけるモデル不確実性の問題に対処する。
論文 参考訳(メタデータ) (2020-04-16T10:51:33Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
制御障壁関数(CBF)に基づく安全な制御器合成のための学習に基づくアプローチを提案する。
最適化に基づくCBFの学習手法を解析し、基礎となる力学系のリプシッツ仮定の下で証明可能な安全保証を享受する。
私たちの知る限りでは、これらはデータから確実に安全な制御障壁関数を学習する最初の結果です。
論文 参考訳(メタデータ) (2020-04-07T12:29:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。