Computational Grounding of Responsibility Attribution and Anticipation in LTLf
- URL: http://arxiv.org/abs/2410.14544v1
- Date: Fri, 18 Oct 2024 15:38:33 GMT
- Title: Computational Grounding of Responsibility Attribution and Anticipation in LTLf
- Authors: Giuseppe De Giacomo, Emiliano Lorini, Timothy Parker, Gianmarco Parretti,
- Abstract summary: Responsibility is a multi-faceted notion involving counterfactual reasoning about actions and strategies.
We show a connection with notions in reactive synthesis, including synthesis of winning, dominant, and best-effort strategies.
- Score: 25.988412601884182
- License:
- Abstract: Responsibility is one of the key notions in machine ethics and in the area of autonomous systems. It is a multi-faceted notion involving counterfactual reasoning about actions and strategies. In this paper, we study different variants of responsibility in a strategic setting based on LTLf. We show a connection with notions in reactive synthesis, including synthesis of winning, dominant, and best-effort strategies. This connection provides the building blocks for a computational grounding of responsibility including complexity characterizations and sound, complete, and optimal algorithms for attributing and anticipating responsibility.
Related papers
- Causal Responsibility Attribution for Human-AI Collaboration [62.474732677086855]
This paper presents a causal framework using Structural Causal Models (SCMs) to systematically attribute responsibility in human-AI systems.
Two case studies illustrate the framework's adaptability in diverse human-AI collaboration scenarios.
arXiv Detail & Related papers (2024-11-05T17:17:45Z) - Responsibility-aware Strategic Reasoning in Probabilistic Multi-Agent Systems [1.7819574476785418]
Responsibility plays a key role in the development and deployment of trustworthy autonomous systems.
We introduce the logic PATL+R, a variant of Probabilistic Alternating-time Temporal Logic.
We present an approach to synthesise joint strategies that satisfy an outcome specified in PATL+R.
arXiv Detail & Related papers (2024-10-31T18:49:12Z) - An Adaptive Framework for Generating Systematic Explanatory Answer in Online Q&A Platforms [62.878616839799776]
We propose SynthRAG, an innovative framework designed to enhance Question Answering (QA) performance.
SynthRAG improves on conventional models by employing adaptive outlines for dynamic content structuring.
An online deployment on the Zhihu platform revealed that SynthRAG's answers achieved notable user engagement.
arXiv Detail & Related papers (2024-10-23T09:14:57Z) - Responsibility in a Multi-Value Strategic Setting [12.143925288392166]
Responsibility is a key notion in multi-agent systems and in creating safe, reliable and ethical AI.
We present a model for responsibility attribution in a multi-agent, multi-value setting.
We show how considerations of responsibility can help an agent to select strategies that are in line with its values.
arXiv Detail & Related papers (2024-10-22T17:51:13Z) - Attributing Responsibility in AI-Induced Incidents: A Computational Reflective Equilibrium Framework for Accountability [13.343937277604892]
The pervasive integration of Artificial Intelligence (AI) has introduced complex challenges in the responsibility and accountability in the event of incidents involving AI-enabled systems.
This work proposes a coherent and ethically acceptable responsibility attribution framework for all stakeholders.
arXiv Detail & Related papers (2024-04-25T18:11:03Z) - K-Level Reasoning: Establishing Higher Order Beliefs in Large Language Models for Strategic Reasoning [76.3114831562989]
It requires Large Language Model (LLM) agents to adapt their strategies dynamically in multi-agent environments.
We propose a novel framework: "K-Level Reasoning with Large Language Models (K-R)"
arXiv Detail & Related papers (2024-02-02T16:07:05Z) - Noise Contrastive Estimation-based Matching Framework for Low-Resource
Security Attack Pattern Recognition [49.536368818512116]
Tactics, Techniques and Procedures (TTPs) represent sophisticated attack patterns in the cybersecurity domain.
We formulate the problem in a different learning paradigm, where the assignment of a text to a TTP label is decided by the direct semantic similarity between the two.
We propose a neural matching architecture with an effective sampling-based learn-to-compare mechanism.
arXiv Detail & Related papers (2024-01-18T19:02:00Z) - Unravelling Responsibility for AI [0.8836921728313208]
It is widely acknowledged that we need to establish where responsibility lies for the outputs and impacts of AI-enabled systems.
This paper draws upon central distinctions in philosophy and law to clarify the concept of responsibility for AI.
arXiv Detail & Related papers (2023-08-04T13:12:17Z) - Semantic Probabilistic Layers for Neuro-Symbolic Learning [83.25785999205932]
We design a predictive layer for structured-output prediction (SOP)
It can be plugged into any neural network guaranteeing its predictions are consistent with a set of predefined symbolic constraints.
Our Semantic Probabilistic Layer (SPL) can model intricate correlations, and hard constraints, over a structured output space.
arXiv Detail & Related papers (2022-06-01T12:02:38Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.