A dataset for cyber threat intelligence modeling of connected autonomous vehicles
- URL: http://arxiv.org/abs/2410.14600v1
- Date: Fri, 18 Oct 2024 16:55:12 GMT
- Title: A dataset for cyber threat intelligence modeling of connected autonomous vehicles
- Authors: Yinghui Wang, Yilong Ren, Hongmao Qin, Zhiyong Cui, Yanan Zhao, Haiyang Yu,
- Abstract summary: This paper reports the creation of a cyber threat intelligence corpus focusing on vehicle cybersecurity knowledge mining.
The proposed dataset will serve as a valuable resource for evaluating the performance of existing algorithms and advancing research in cyber threat intelligence modeling within the automotive field.
- Score: 17.58243748365034
- License:
- Abstract: Cyber attacks have become a vital threat to connected autonomous vehicles in intelligent transportation systems. Cyber threat intelligence, as the collection of cyber threat information, provides an ideal approach for responding to emerging vehicle cyber threats and enabling proactive security defense. Obtaining valuable information from enormous cybersecurity data using knowledge extraction technologies to achieve cyber threat intelligence modeling is an effective means to ensure automotive cybersecurity. Unfortunately, there is no existing cybersecurity dataset available for cyber threat intelligence modeling research in the automotive field. This paper reports the creation of a cyber threat intelligence corpus focusing on vehicle cybersecurity knowledge mining. This dataset, annotated using a joint labeling strategy, comprises 908 real automotive cybersecurity reports, containing 3678 sentences, 8195 security entities and 4852 semantic relations. We further conduct a comprehensive analysis of cyber threat intelligence mining algorithms based on this corpus. The proposed dataset will serve as a valuable resource for evaluating the performance of existing algorithms and advancing research in cyber threat intelligence modeling within the automotive field.
Related papers
- Proactive security defense: cyber threat intelligence modeling for connected autonomous vehicles [18.956583063203738]
We suggest an automotive CTI modeling framework, Actim, to extract and analyse the interrelated relationships among cyber threat elements.
Experiment results show that the proposed BERT-DocHiatt-BiLSTM-LSTM model exceeds the performance of existing methods.
arXiv Detail & Related papers (2024-10-21T13:49:35Z) - SEvenLLM: Benchmarking, Eliciting, and Enhancing Abilities of Large Language Models in Cyber Threat Intelligence [27.550484938124193]
This paper introduces a framework to benchmark, elicit, and improve cybersecurity incident analysis and response abilities.
We create a high-quality bilingual instruction corpus by crawling cybersecurity raw text from cybersecurity websites.
The instruction dataset SEvenLLM-Instruct is used to train cybersecurity LLMs with the multi-task learning objective.
arXiv Detail & Related papers (2024-05-06T13:17:43Z) - NLP-Based Techniques for Cyber Threat Intelligence [13.958337678497163]
Survey paper provides a comprehensive overview of NLP-based techniques applied in the context of threat intelligence.
It begins by describing the foundational definitions and principles of CTI as a major tool for safeguarding digital assets.
It then undertakes a thorough examination of NLP-based techniques for CTI data crawling from Web sources, CTI data analysis, Relation Extraction from cybersecurity data, CTI sharing and collaboration, and security threats of CTI.
arXiv Detail & Related papers (2023-11-15T09:23:33Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Recognizing and Extracting Cybersecurtity-relevant Entities from Text [1.7499351967216343]
Cyber Threat Intelligence (CTI) is information describing threat vectors, vulnerabilities, and attacks.
CTI is often used as training data for AI-based cyber defense systems such as Cybersecurity Knowledge Graphs (CKG)
arXiv Detail & Related papers (2022-08-02T18:44:06Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
The workshop will focus on the application of AI to problems in cyber security.
Cyber systems generate large volumes of data, utilizing this effectively is beyond human capabilities.
arXiv Detail & Related papers (2022-02-28T18:27:41Z) - Generating Cyber Threat Intelligence to Discover Potential Security
Threats Using Classification and Topic Modeling [6.0897744845912865]
Cyber Threat Intelligence (CTI) has been represented as one of the proactive and robust mechanisms.
Our goal is to identify and explore relevant CTI from hacker forums by using different supervised and unsupervised learning techniques.
arXiv Detail & Related papers (2021-08-16T02:30:29Z) - A System for Automated Open-Source Threat Intelligence Gathering and
Management [53.65687495231605]
SecurityKG is a system for automated OSCTI gathering and management.
It uses a combination of AI and NLP techniques to extract high-fidelity knowledge about threat behaviors.
arXiv Detail & Related papers (2021-01-19T18:31:35Z) - A System for Efficiently Hunting for Cyber Threats in Computer Systems
Using Threat Intelligence [78.23170229258162]
We build ThreatRaptor, a system that facilitates cyber threat hunting in computer systems using OSCTI.
ThreatRaptor provides (1) an unsupervised, light-weight, and accurate NLP pipeline that extracts structured threat behaviors from unstructured OSCTI text, (2) a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities, and (3) a query synthesis mechanism that automatically synthesizes a TBQL query from the extracted threat behaviors.
arXiv Detail & Related papers (2021-01-17T19:44:09Z) - Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence [94.94833077653998]
ThreatRaptor is a system that facilitates threat hunting in computer systems using open-source Cyber Threat Intelligence (OSCTI)
It extracts structured threat behaviors from unstructured OSCTI text and uses a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities.
Evaluations on a broad set of attack cases demonstrate the accuracy and efficiency of ThreatRaptor in practical threat hunting.
arXiv Detail & Related papers (2020-10-26T14:54:01Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.