MultiOrg: A Multi-rater Organoid-detection Dataset
- URL: http://arxiv.org/abs/2410.14612v1
- Date: Fri, 18 Oct 2024 17:05:03 GMT
- Title: MultiOrg: A Multi-rater Organoid-detection Dataset
- Authors: Christina Bukas, Harshavardhan Subramanian, Fenja See, Carina Steinchen, Ivan Ezhov, Gowtham Boosarpu, Sara Asgharpour, Gerald Burgstaller, Mareike Lehmann, Florian Kofler, Marie Piraud,
- Abstract summary: This dataset comprises over 400 high-resolution 2d microscopy images and curated annotations of more than 60,000 organoids.
We additionally provide a benchmark for organoid detection, and make the best model available through an easily installable, interactive plugin for the popular image visualization tool Napari.
- Score: 1.29058164565662
- License:
- Abstract: High-throughput image analysis in the biomedical domain has gained significant attention in recent years, driving advancements in drug discovery, disease prediction, and personalized medicine. Organoids, specifically, are an active area of research, providing excellent models for human organs and their functions. Automating the quantification of organoids in microscopy images would provide an effective solution to overcome substantial manual quantification bottlenecks, particularly in high-throughput image analysis. However, there is a notable lack of open biomedical datasets, in contrast to other domains, such as autonomous driving, and, notably, only few of them have attempted to quantify annotation uncertainty. In this work, we present MultiOrg a comprehensive organoid dataset tailored for object detection tasks with uncertainty quantification. This dataset comprises over 400 high-resolution 2d microscopy images and curated annotations of more than 60,000 organoids. Most importantly, it includes three label sets for the test data, independently annotated by two experts at distinct time points. We additionally provide a benchmark for organoid detection, and make the best model available through an easily installable, interactive plugin for the popular image visualization tool Napari, to perform organoid quantification.
Related papers
- Multiplex Imaging Analysis in Pathology: a Comprehensive Review on Analytical Approaches and Digital Toolkits [0.7968706282619793]
Multi multiplexed imaging allows for simultaneous visualization of multiple biomarkers in a single section.
Data from multiplexed imaging requires sophisticated computational methods for preprocessing, segmentation, feature extraction, and spatial analysis.
PathML is an AI-powered platform that streamlines image analysis, making complex interpretation accessible for clinical and research settings.
arXiv Detail & Related papers (2024-11-01T18:02:41Z) - DiffKillR: Killing and Recreating Diffeomorphisms for Cell Annotation in Dense Microscopy Images [105.46086313858062]
We introduce DiffKillR, a novel framework that reframes cell annotation as the combination of archetype matching and image registration tasks.
We will discuss the theoretical properties of DiffKillR and validate it on three microscopy tasks, demonstrating its advantages over existing supervised, semi-supervised, and unsupervised methods.
arXiv Detail & Related papers (2024-10-04T00:38:29Z) - BiomedParse: a biomedical foundation model for image parsing of everything everywhere all at once [58.41069132627823]
holistic image analysis comprises subtasks such as segmentation, detection, and recognition of relevant objects.
Here, we propose BiomedParse, a biomedical foundation model for imaging parsing that can jointly conduct segmentation, detection, and recognition for 82 object types across 9 imaging modalities.
Through joint learning, we can improve accuracy for individual tasks and enable novel applications such as segmenting all relevant objects in a noisy image through a text prompt.
arXiv Detail & Related papers (2024-05-21T17:54:06Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
Masked slice diffusion for super-resolution exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens.
We focus on the application of SliceR to stimulated histology (SRH), characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning.
arXiv Detail & Related papers (2024-04-15T02:41:55Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - MedYOLO: A Medical Image Object Detection Framework [0.0]
We report on MedYOLO, a 3-D object detection framework using the one-shot detection method of the YOLO family of models.
We found our models achieve high performance on commonly present medium and large-sized structures such as the heart, liver, and pancreas.
arXiv Detail & Related papers (2023-12-12T20:46:14Z) - SegmentAnything helps microscopy images based automatic and quantitative organoid detection and analysis [2.9074136720945356]
Organoids are self-organized 3D cell clusters that closely mimic the architecture and function of in vivo tissues and organs.
Recent microscopy techniques provide a potent tool to acquire organoid morphology features, but manual image analysis remains a labor and time-intensive process.
This paper proposes a comprehensive pipeline for microscopy analysis that leverages the SegmentAnything to precisely demarcate individual organoids.
arXiv Detail & Related papers (2023-09-08T08:03:42Z) - A Knowledge Distillation framework for Multi-Organ Segmentation of
Medaka Fish in Tomographic Image [5.881800919492064]
We propose a self-training framework for multi-organ segmentation in tomographic images of Medaka fish.
We utilize the pseudo-labeled data from a pretrained model and adopt a Quality Teacher to refine the pseudo-labeled data.
The experimental results demonstrate that our method improves mean Intersection over Union (IoU) by 5.9% on the full dataset.
arXiv Detail & Related papers (2023-02-24T10:31:29Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Microscopic fine-grained instance classification through deep attention [7.50282814989294]
Fine-grained classification of microscopic image data with limited samples is an open problem in computer vision and biomedical imaging.
We propose a simple yet effective deep network that performs two tasks simultaneously in an end-to-end manner.
The result is a robust but lightweight end-to-end trainable deep network that yields state-of-the-art results.
arXiv Detail & Related papers (2020-10-06T15:29:58Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.