Distance between Relevant Information Pieces Causes Bias in Long-Context LLMs
- URL: http://arxiv.org/abs/2410.14641v1
- Date: Fri, 18 Oct 2024 17:41:19 GMT
- Title: Distance between Relevant Information Pieces Causes Bias in Long-Context LLMs
- Authors: Runchu Tian, Yanghao Li, Yuepeng Fu, Siyang Deng, Qinyu Luo, Cheng Qian, Shuo Wang, Xin Cong, Zhong Zhang, Yesai Wu, Yankai Lin, Huadong Wang, Xiaojiang Liu,
- Abstract summary: LongPiBench is a benchmark designed to assess positional bias involving multiple pieces of relevant information.
These experiments reveal that while most current models are robust against the "lost in the middle" issue, there exist significant biases related to the spacing of relevant information pieces.
- Score: 50.40165119718928
- License:
- Abstract: Positional bias in large language models (LLMs) hinders their ability to effectively process long inputs. A prominent example is the "lost in the middle" phenomenon, where LLMs struggle to utilize relevant information situated in the middle of the input. While prior research primarily focuses on single pieces of relevant information, real-world applications often involve multiple relevant information pieces. To bridge this gap, we present LongPiBench, a benchmark designed to assess positional bias involving multiple pieces of relevant information. Thorough experiments are conducted with five commercial and six open-source models. These experiments reveal that while most current models are robust against the "lost in the middle" issue, there exist significant biases related to the spacing of relevant information pieces. These findings highlight the importance of evaluating and reducing positional biases to advance LLM's capabilities.
Related papers
- On Positional Bias of Faithfulness for Long-form Summarization [83.63283027830657]
Large Language Models (LLMs) often exhibit positional bias in long-context settings, under-attending to information in the middle of inputs.
We investigate the presence of this bias in long-form summarization, its impact on faithfulness, and various techniques to mitigate this bias.
arXiv Detail & Related papers (2024-10-31T03:50:15Z) - The LLM Effect: Are Humans Truly Using LLMs, or Are They Being Influenced By Them Instead? [60.01746782465275]
Large Language Models (LLMs) have shown capabilities close to human performance in various analytical tasks.
This paper investigates the efficiency and accuracy of LLMs in specialized tasks through a structured user study focusing on Human-LLM partnership.
arXiv Detail & Related papers (2024-10-07T02:30:18Z) - Found in the Middle: Calibrating Positional Attention Bias Improves Long Context Utilization [97.84156490765457]
Large language models (LLMs) struggle to capture relevant information located in the middle of their input.
This phenomenon has been known as the lost-in-the-middle problem.
We show found-in-the-middle achieves better performance in locating relevant information within a long context.
arXiv Detail & Related papers (2024-06-23T04:35:42Z) - Insights into LLM Long-Context Failures: When Transformers Know but Don't Tell [14.146413770229392]
Large Language Models (LLMs) exhibit positional bias, struggling to utilize information from the middle or end of long contexts.
We find that while LLMs encode the position of target information, they often fail to leverage this in generating accurate responses.
arXiv Detail & Related papers (2024-06-20T18:50:44Z) - Investigating Bias in LLM-Based Bias Detection: Disparities between LLMs and Human Perception [13.592532358127293]
We investigate the presence and nature of bias within Large Language Models (LLMs)
We probe whether LLMs exhibit biases, particularly in political bias prediction and text continuation tasks.
We propose debiasing strategies, including prompt engineering and model fine-tuning.
arXiv Detail & Related papers (2024-03-22T00:59:48Z) - Found in the Middle: How Language Models Use Long Contexts Better via
Plug-and-Play Positional Encoding [78.36702055076456]
This paper introduces Multi-scale Positional.
(Ms-PoE) which is a simple yet effective plug-and-play approach to enhance the capacity of.
LLMs to handle relevant information located in the middle of the context.
arXiv Detail & Related papers (2024-03-05T04:58:37Z) - Never Lost in the Middle: Mastering Long-Context Question Answering with Position-Agnostic Decompositional Training [9.128501882000315]
Large language models (LLMs) are struggling to seek correct information in long contexts.
This paper proposes to enhance the information searching and reflection ability of LLMs in long contexts via specially designed tasks.
Experimental results show substantial improvement in Multi-doc QA and other benchmarks, superior to state-of-the-art models by 13.7% absolute gain in shuffled settings.
arXiv Detail & Related papers (2023-11-15T18:42:44Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
arXiv Detail & Related papers (2023-11-15T00:02:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.