Bridging the Training-Inference Gap in LLMs by Leveraging Self-Generated Tokens
- URL: http://arxiv.org/abs/2410.14655v1
- Date: Fri, 18 Oct 2024 17:48:27 GMT
- Title: Bridging the Training-Inference Gap in LLMs by Leveraging Self-Generated Tokens
- Authors: Zhepeng Cen, Yao Liu, Siliang Zeng, Pratik Chaudhar, Huzefa Rangwala, George Karypis, Rasool Fakoor,
- Abstract summary: Language models are often trained to maximize the likelihood of the next token given past tokens in the training dataset.
During inference time, they are utilized differently, generating text sequentially and auto-regressively by using previously generated tokens as input to predict the next one.
This paper proposes two simple approaches based on model own generation to address this discrepancy between the training and inference time.
- Score: 31.568675300434816
- License:
- Abstract: Language models are often trained to maximize the likelihood of the next token given past tokens in the training dataset. However, during inference time, they are utilized differently, generating text sequentially and auto-regressively by using previously generated tokens as input to predict the next one. Marginal differences in predictions at each step can cascade over successive steps, resulting in different distributions from what the models were trained for and potentially leading to unpredictable behavior. This paper proposes two simple approaches based on model own generation to address this discrepancy between the training and inference time. Our first approach is Batch-Scheduled Sampling, where, during training, we stochastically choose between the ground-truth token from the dataset and the model's own generated token as input to predict the next token. This is done in an offline manner, modifying the context window by interleaving ground-truth tokens with those generated by the model. Our second approach is Reference-Answer-based Correction, where we explicitly incorporate a self-correction capability into the model during training. This enables the model to effectively self-correct the gaps between the generated sequences and the ground truth data without relying on an external oracle model. By incorporating our proposed strategies during training, we have observed an overall improvement in performance compared to baseline methods, as demonstrated by our extensive experiments using summarization, general question-answering, and math question-answering tasks.
Related papers
- Semformer: Transformer Language Models with Semantic Planning [18.750863564495006]
Next-token prediction serves as the dominant component in current neural language models.
We introduce Semformer, a novel method of training a Transformer language model that explicitly models the semantic planning of response.
arXiv Detail & Related papers (2024-09-17T12:54:34Z) - Adaptive Pre-training Data Detection for Large Language Models via Surprising Tokens [1.2549198550400134]
Large language models (LLMs) are extensively used, but there are concerns regarding privacy, security, and copyright due to their opaque training data.
Current solutions to this problem leverage techniques explored in machine learning privacy such as Membership Inference Attacks (MIAs)
We propose an adaptive pre-training data detection method which alleviates this reliance and effectively amplify the identification.
arXiv Detail & Related papers (2024-07-30T23:43:59Z) - Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion [61.03681839276652]
Diffusion Forcing is a new training paradigm where a diffusion model is trained to denoise a set of tokens with independent per-token noise levels.
We apply Diffusion Forcing to sequence generative modeling by training a causal next-token prediction model to generate one or several future tokens.
arXiv Detail & Related papers (2024-07-01T15:43:25Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
Language models can learn a range of capabilities from unsupervised training on text corpora.
It is often easier for humans to choose between options than to provide labeled data, and prior work has achieved state-of-the-art performance by training a reward model from such preference comparisons.
We seek to address these problems via uncertainty estimation, which can improve sample efficiency and robustness using active learning and risk-averse reinforcement learning.
arXiv Detail & Related papers (2022-03-14T20:13:21Z) - On the Transferability of Pre-trained Language Models: A Study from
Artificial Datasets [74.11825654535895]
Pre-training language models (LMs) on large-scale unlabeled text data makes the model much easier to achieve exceptional downstream performance.
We study what specific traits in the pre-training data, other than the semantics, make a pre-trained LM superior to their counterparts trained from scratch on downstream tasks.
arXiv Detail & Related papers (2021-09-08T10:39:57Z) - Is BERT a Cross-Disciplinary Knowledge Learner? A Surprising Finding of
Pre-trained Models' Transferability [74.11825654535895]
We investigate whether the power of the models pre-trained on text data, such as BERT, can be transferred to general token sequence classification applications.
We find that even on non-text data, the models pre-trained on text converge faster than the randomly models.
arXiv Detail & Related papers (2021-03-12T09:19:14Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - Self-Supervised Contrastive Learning for Unsupervised Phoneme
Segmentation [37.054709598792165]
The model is a convolutional neural network that operates directly on the raw waveform.
It is optimized to identify spectral changes in the signal using the Noise-Contrastive Estimation principle.
At test time, a peak detection algorithm is applied over the model outputs to produce the final boundaries.
arXiv Detail & Related papers (2020-07-27T12:10:21Z) - Document Ranking with a Pretrained Sequence-to-Sequence Model [56.44269917346376]
We show how a sequence-to-sequence model can be trained to generate relevance labels as "target words"
Our approach significantly outperforms an encoder-only model in a data-poor regime.
arXiv Detail & Related papers (2020-03-14T22:29:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.