論文の概要: DiscoGraMS: Enhancing Movie Screen-Play Summarization using Movie Character-Aware Discourse Graph
- arxiv url: http://arxiv.org/abs/2410.14666v1
- Date: Fri, 18 Oct 2024 17:56:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:27:20.576536
- Title: DiscoGraMS: Enhancing Movie Screen-Play Summarization using Movie Character-Aware Discourse Graph
- Title(参考訳): DiscoGraMS:映画キャラクタ対応談話グラフを用いた映画スクリーンプレイ要約の強化
- Authors: Maitreya Prafulla Chitale, Uday Bindal, Rajakrishnan Rajkumar, Rahul Mishra,
- Abstract要約: 映画脚本を映画キャラクタ対応の談話グラフ(CaD Graph)として表現する新しいリソースであるDiscoGraMSを紹介する。
このモデルは、スクリーンプレイの内容をより包括的で忠実に表現することで、すべての健全な情報を保存することを目的としている。
- 参考スコア(独自算出の注目度): 6.980991481207376
- License:
- Abstract: Summarizing movie screenplays presents a unique set of challenges compared to standard document summarization. Screenplays are not only lengthy, but also feature a complex interplay of characters, dialogues, and scenes, with numerous direct and subtle relationships and contextual nuances that are difficult for machine learning models to accurately capture and comprehend. Recent attempts at screenplay summarization focus on fine-tuning transformer-based pre-trained models, but these models often fall short in capturing long-term dependencies and latent relationships, and frequently encounter the "lost in the middle" issue. To address these challenges, we introduce DiscoGraMS, a novel resource that represents movie scripts as a movie character-aware discourse graph (CaD Graph). This approach is well-suited for various downstream tasks, such as summarization, question-answering, and salience detection. The model aims to preserve all salient information, offering a more comprehensive and faithful representation of the screenplay's content. We further explore a baseline method that combines the CaD Graph with the corresponding movie script through a late fusion of graph and text modalities, and we present very initial promising results.
- Abstract(参考訳): 映画の脚本の要約は、標準的な文書の要約と比較すると、独特な課題の集合を示す。
スクリーンプレイは長いだけでなく、文字、対話、シーンの複雑な相互作用も備えており、直接的かつ微妙な関係や文脈的なニュアンスが多く、機械学習モデルが正確に把握し理解することが困難である。
近年の画面要約の試みは、微調整トランスフォーマーをベースとした事前訓練モデルに焦点をあてているが、これらのモデルは長期的な依存関係と潜伏関係を捉え、しばしば「中間の失われた」問題に遭遇する。
これらの課題に対処するために,映画脚本を映画キャラクタ対応の談話グラフ(CaD Graph)として表現する新しいリソースであるDiscoGraMSを紹介する。
このアプローチは、要約、質問応答、サリエンス検出など、さまざまな下流タスクに適している。
このモデルは、スクリーンプレイの内容をより包括的で忠実に表現することで、すべての健全な情報を保存することを目的としている。
さらに,CaDグラフと対応する映画スクリプトを結合したベースライン法を,グラフとテキストモダリティの後期融合により検討し,非常に初期の有望な結果を示す。
関連論文リスト
- ScreenWriter: Automatic Screenplay Generation and Movie Summarisation [55.20132267309382]
ビデオコンテンツは、ユーザーがキープロットポイントをリコールしたり、見ずに概要を見ることができるようなテキスト記述や要約の需要を駆り立ててきた。
本稿では,映像のみを操作し,対話,話者名,シーンブレーク,視覚的記述を含む出力を生成するScreenWriterを提案する。
ScreenWriterは、映像を視覚ベクトルのシーケンスに基づいてシーンに分割する新しいアルゴリズムを導入し、アクターの顔のデータベースに基づく文字名決定の難しい問題に対する新しい方法を提案する。
論文 参考訳(メタデータ) (2024-10-17T07:59:54Z) - MovieSum: An Abstractive Summarization Dataset for Movie Screenplays [11.318175666743656]
映画脚本の抽象的な要約のための新しいデータセットであるMovieSumを提示する。
このデータセットはウィキペディアのプロットサマリーを伴って2200の映画脚本で構成されている。
論文 参考訳(メタデータ) (2024-08-12T16:43:09Z) - MovieDreamer: Hierarchical Generation for Coherent Long Visual Sequence [62.72540590546812]
MovieDreamerは、自己回帰モデルの強みと拡散ベースのレンダリングを統合する、新しい階層的なフレームワークである。
様々な映画ジャンルにまたがって実験を行い、そのアプローチが優れた視覚的・物語的品質を実現することを示す。
論文 参考訳(メタデータ) (2024-07-23T17:17:05Z) - Movie101v2: Improved Movie Narration Benchmark [53.54176725112229]
映像の自動ナレーションは、視覚障害者を支援するために、映像に合わせたプロット記述を生成することを目的としている。
映画ナレーションに特化して設計されたデータ品質を向上した大規模バイリンガルデータセットであるMovie101v2を紹介する。
新しいベンチマークに基づいて,GPT-4Vを含む多数の視覚言語モデルをベースライン化し,ナレーション生成における課題の詳細な分析を行う。
論文 参考訳(メタデータ) (2024-04-20T13:15:27Z) - Select and Summarize: Scene Saliency for Movie Script Summarization [11.318175666743656]
そこで本研究では,100本の映画に対して,人間による注釈付きサリエントシーンからなるシーン・サリエンシ・データセットを提案する。
そこで本研究では,まずスクリプト中の健全なシーンを識別し,そのシーンのみを用いて要約を生成する2段階の抽象要約手法を提案する。
論文 参考訳(メタデータ) (2024-04-04T16:16:53Z) - Make-A-Story: Visual Memory Conditioned Consistent Story Generation [57.691064030235985]
本稿では,アクタと背景コンテキストを暗黙的にキャプチャするビジュアルメモリモジュールを備えた,自己回帰拡散に基づく新しいフレームワークを提案する。
本手法は,視覚的品質の高いフレーム生成において,先行技術よりも優れていた。
MUGEN, PororoSV, FlintstonesSVデータセット上でのストーリー生成実験により, この手法は, 視覚的品質の高いフレーム生成において, 先行技術よりも優れるだけでなく, キャラクタと背景との適切な対応をモデル化した。
論文 参考訳(メタデータ) (2022-11-23T21:38:51Z) - SummScreen: A Dataset for Abstractive Screenplay Summarization [52.56760815805357]
SummScreenは、テレビシリーズトランスクリプトと人間の書かれたリキャップのペアで構成されたデータセットです。
プロットの詳細はしばしば文字対話で間接的に表現され、書き起こしの全体にわたって散らばることがある。
キャラクタはテレビシリーズの基本であるため,2つのエンティティ中心評価指標も提案する。
論文 参考訳(メタデータ) (2021-04-14T19:37:40Z) - Movie Summarization via Sparse Graph Construction [65.16768855902268]
マルチモーダル情報を用いて構築された,シーン間の関係を表すスパースなムービーグラフを構築することで,TPシーンを識別するモデルを提案する。
人間の判断によれば、我々のアプローチによって作成された要約は、シーケンスベースモデルや汎用的な要約アルゴリズムの出力よりも、より情報的で完全であり、より高い評価を受けている。
論文 参考訳(メタデータ) (2020-12-14T13:54:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。