Brain-Aware Readout Layers in GNNs: Advancing Alzheimer's early Detection and Neuroimaging
- URL: http://arxiv.org/abs/2410.14683v1
- Date: Thu, 03 Oct 2024 05:04:45 GMT
- Title: Brain-Aware Readout Layers in GNNs: Advancing Alzheimer's early Detection and Neuroimaging
- Authors: Jiwon Youn, Dong Woo Kang, Hyun Kook Lim, Mansu Kim,
- Abstract summary: This study introduces a novel brain-aware readout layer (BA readout layer) for Graph Neural Networks (GNNs)
By clustering brain regions based on functional connectivity and node embedding, this layer improves the GNN's capability to capture complex brain network characteristics.
Our results show that GNNs with the BA readout layer significantly outperform traditional models in predicting the Preclinical Alzheimer's Cognitive Composite (PACC) score.
- Score: 1.074960192271861
- License:
- Abstract: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory and cognitive decline, affecting millions worldwide. Diagnosing AD is challenging due to its heterogeneous nature and variable progression. This study introduces a novel brain-aware readout layer (BA readout layer) for Graph Neural Networks (GNNs), designed to improve interpretability and predictive accuracy in neuroimaging for early AD diagnosis. By clustering brain regions based on functional connectivity and node embedding, this layer improves the GNN's capability to capture complex brain network characteristics. We analyzed neuroimaging data from 383 participants, including both cognitively normal and preclinical AD individuals, using T1-weighted MRI, resting-state fMRI, and FBB-PET to construct brain graphs. Our results show that GNNs with the BA readout layer significantly outperform traditional models in predicting the Preclinical Alzheimer's Cognitive Composite (PACC) score, demonstrating higher robustness and stability. The adaptive BA readout layer also offers enhanced interpretability by highlighting task-specific brain regions critical to cognitive functions impacted by AD. These findings suggest that our approach provides a valuable tool for the early diagnosis and analysis of Alzheimer's disease.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Towards the Discovery of Down Syndrome Brain Biomarkers Using Generative Models [0.0]
We evaluate state-of-the-art brain anomaly detection models based on Variational Autoencoders and Diffusion Models.
Our findings indicate that some models effectively detect the primary alterations characterizing Down syndrome's brain anatomy.
arXiv Detail & Related papers (2024-09-20T12:01:15Z) - Study of Brain Network in Alzheimers Disease Using Wavelet-Based Graph Theory Method [0.0]
Alzheimer's disease (AD) is a neurodegenerative disorder marked by memory loss and cognitive decline.
Traditional methods, such as Pearson's correlation, have been used to calculate association matrices.
We introduce a novel method that integrates discrete wavelet transform (DWT) and graph theory to model the dynamic behavior of brain networks.
arXiv Detail & Related papers (2024-09-06T07:26:14Z) - Large Language Model-based FMRI Encoding of Language Functions for Subjects with Neurocognitive Disorder [53.575426835313536]
This paper explores language-related functional changes in older NCD adults using LLM-based fMRI encoding and brain scores.
We analyze the correlation between brain scores and cognitive scores at both whole-brain and language-related ROI levels.
Our findings reveal that higher cognitive abilities correspond to better brain scores, with correlations peaking in the middle temporal gyrus.
arXiv Detail & Related papers (2024-07-15T01:09:08Z) - SNeurodCNN: Structure-focused Neurodegeneration Convolutional Neural Network for Modelling and Classification of Alzheimer's Disease [0.0]
Alzheimer's disease (AD), the predominant form of dementia, is a growing global challenge.
Current clinical diagnoses rely on radiologist expert interpretation, which is prone to human error.
This paper proposes a deep learning framework that includes a novel structure-focused neurodegeneration CNN architecture named SNeurodCNN.
arXiv Detail & Related papers (2024-01-08T14:33:57Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline [54.93591298333767]
Brain diffuser is a diffusion based end-to-end brain network generative model.
It exploits more structural connectivity features and disease-related information by analyzing disparities in structural brain networks across subjects.
For the case of Alzheimer's disease, the proposed model performs better than the results from existing toolkits on the Alzheimer's Disease Neuroimaging Initiative database.
arXiv Detail & Related papers (2023-03-11T14:04:58Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
We propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis.
We first use a set of well-defined multiscale atlases to compute multiscale FCNs.
Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling.
arXiv Detail & Related papers (2022-09-22T04:17:57Z) - Deep Learning Identifies Neuroimaging Signatures of Alzheimer's Disease
Using Structural and Synthesized Functional MRI Data [8.388888908045406]
We propose a potential solution by first learning a structural-to-functional transformation in brain MRI.
We then synthesize spatially matched functional images from large-scale structural scans.
We identify the temporal lobe to be the most predictive structural-region and the parieto-occipital lobe to be the most predictive functional-region of our model.
arXiv Detail & Related papers (2021-04-10T03:16:33Z) - Deep Convolutional Neural Network based Classification of Alzheimer's
Disease using MRI data [8.609787905151563]
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disease which destroys brain cells and causes loss to patient's memory.
In this paper, we have proposed a smart and accurate way of diagnosing AD based on a two-dimensional deep convolutional neural network (2D-DCNN) using imbalanced three-dimensional MRI dataset.
The model classifies MRI into three categories: AD, mild cognitive impairment, and normal control: and has achieved 99.89% classification accuracy with imbalanced classes.
arXiv Detail & Related papers (2021-01-08T06:51:08Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.