Towards the Discovery of Down Syndrome Brain Biomarkers Using Generative Models
- URL: http://arxiv.org/abs/2409.13437v1
- Date: Fri, 20 Sep 2024 12:01:15 GMT
- Title: Towards the Discovery of Down Syndrome Brain Biomarkers Using Generative Models
- Authors: Jordi Malé, Juan Fortea, Mateus Rozalem Aranha, Yann Heuzé, Neus Martínez-Abadías, Xavier Sevillano,
- Abstract summary: We evaluate state-of-the-art brain anomaly detection models based on Variational Autoencoders and Diffusion Models.
Our findings indicate that some models effectively detect the primary alterations characterizing Down syndrome's brain anatomy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain imaging has allowed neuroscientists to analyze brain morphology in genetic and neurodevelopmental disorders, such as Down syndrome, pinpointing regions of interest to unravel the neuroanatomical underpinnings of cognitive impairment and memory deficits. However, the connections between brain anatomy, cognitive performance and comorbidities like Alzheimer's disease are still poorly understood in the Down syndrome population. The latest advances in artificial intelligence constitute an opportunity for developing automatic tools to analyze large volumes of brain magnetic resonance imaging scans, overcoming the bottleneck of manual analysis. In this study, we propose the use of generative models for detecting brain alterations in people with Down syndrome affected by various degrees of neurodegeneration caused by Alzheimer's disease. To that end, we evaluate state-of-the-art brain anomaly detection models based on Variational Autoencoders and Diffusion Models, leveraging a proprietary dataset of brain magnetic resonance imaging scans. Following a comprehensive evaluation process, our study includes several key analyses. First, we conducted a qualitative evaluation by expert neuroradiologists. Second, we performed both quantitative and qualitative reconstruction fidelity studies for the generative models. Third, we carried out an ablation study to examine how the incorporation of histogram post-processing can enhance model performance. Finally, we executed a quantitative volumetric analysis of subcortical structures. Our findings indicate that some models effectively detect the primary alterations characterizing Down syndrome's brain anatomy, including a smaller cerebellum, enlarged ventricles, and cerebral cortex reduction, as well as the parietal lobe alterations caused by Alzheimer's disease.
Related papers
- Diffusion Models for Computational Neuroimaging: A Survey [20.24146298881525]
Computational neuroimaging involves analyzing brain images or signals to provide mechanistic insights and predictive tools for human cognition and behavior.
diffusion models have shown stability and high-quality generation in natural images.
There is increasing interest in adapting them to analyze brain data for various neurological tasks such as data enhancement, disease diagnosis and brain decoding.
arXiv Detail & Related papers (2025-02-10T15:20:07Z) - Deep Learning for Early Alzheimer Disease Detection with MRI Scans [1.9806397201363817]
Alzheimer's disease requires diagnosis by a detailed assessment of MRI scans and neuropsychological tests of the patients.
This project compares existing deep learning models in the pursuit of enhancing the accuracy and efficiency of AD diagnosis.
We perform rigorous evaluation to determine strengths and weaknesses for each model by considering sensitivity, specificity, and computational efficiency.
arXiv Detail & Related papers (2025-01-17T07:30:16Z) - Explainable Brain Age Gap Prediction in Neurodegenerative Conditions using coVariance Neural Networks [94.06526659234756]
Black-box machine learning approaches to brain age gap prediction have limited practical utility.
We apply the VNN-based approach to study brain age gap using cortical thickness features for various prevalent neurodegenerative conditions.
Our results reveal distinct anatomic patterns for brain age gap in Alzheimer's disease, frontotemporal dementia, and atypical Parkinsonian disorders.
arXiv Detail & Related papers (2025-01-02T19:37:09Z) - Brain-Aware Readout Layers in GNNs: Advancing Alzheimer's early Detection and Neuroimaging [1.074960192271861]
This study introduces a novel brain-aware readout layer (BA readout layer) for Graph Neural Networks (GNNs)
By clustering brain regions based on functional connectivity and node embedding, this layer improves the GNN's capability to capture complex brain network characteristics.
Our results show that GNNs with the BA readout layer significantly outperform traditional models in predicting the Preclinical Alzheimer's Cognitive Composite (PACC) score.
arXiv Detail & Related papers (2024-10-03T05:04:45Z) - Anatomical Foundation Models for Brain MRIs [6.993491018326816]
We propose AnatCL, an anatomical foundation model for brain MRIs.
We consider 12 different downstream tasks for the diagnosis of different conditions.
Our findings show that incorporating anatomical information during pre-training leads to more robust and general representations.
arXiv Detail & Related papers (2024-08-07T14:04:50Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
We propose a novel model called BrainODE to achieve continuous modeling of dynamic brain signals.
By learning latent initial values and neural ODE functions from irregular time series, BrainODE effectively reconstructs brain signals at any time point.
arXiv Detail & Related papers (2024-04-30T10:53:30Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline [54.93591298333767]
Brain diffuser is a diffusion based end-to-end brain network generative model.
It exploits more structural connectivity features and disease-related information by analyzing disparities in structural brain networks across subjects.
For the case of Alzheimer's disease, the proposed model performs better than the results from existing toolkits on the Alzheimer's Disease Neuroimaging Initiative database.
arXiv Detail & Related papers (2023-03-11T14:04:58Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Deep Learning Identifies Neuroimaging Signatures of Alzheimer's Disease
Using Structural and Synthesized Functional MRI Data [8.388888908045406]
We propose a potential solution by first learning a structural-to-functional transformation in brain MRI.
We then synthesize spatially matched functional images from large-scale structural scans.
We identify the temporal lobe to be the most predictive structural-region and the parieto-occipital lobe to be the most predictive functional-region of our model.
arXiv Detail & Related papers (2021-04-10T03:16:33Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.