Towards the Discovery of Down Syndrome Brain Biomarkers Using Generative Models
- URL: http://arxiv.org/abs/2409.13437v1
- Date: Fri, 20 Sep 2024 12:01:15 GMT
- Title: Towards the Discovery of Down Syndrome Brain Biomarkers Using Generative Models
- Authors: Jordi Malé, Juan Fortea, Mateus Rozalem Aranha, Yann Heuzé, Neus Martínez-Abadías, Xavier Sevillano,
- Abstract summary: We evaluate state-of-the-art brain anomaly detection models based on Variational Autoencoders and Diffusion Models.
Our findings indicate that some models effectively detect the primary alterations characterizing Down syndrome's brain anatomy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain imaging has allowed neuroscientists to analyze brain morphology in genetic and neurodevelopmental disorders, such as Down syndrome, pinpointing regions of interest to unravel the neuroanatomical underpinnings of cognitive impairment and memory deficits. However, the connections between brain anatomy, cognitive performance and comorbidities like Alzheimer's disease are still poorly understood in the Down syndrome population. The latest advances in artificial intelligence constitute an opportunity for developing automatic tools to analyze large volumes of brain magnetic resonance imaging scans, overcoming the bottleneck of manual analysis. In this study, we propose the use of generative models for detecting brain alterations in people with Down syndrome affected by various degrees of neurodegeneration caused by Alzheimer's disease. To that end, we evaluate state-of-the-art brain anomaly detection models based on Variational Autoencoders and Diffusion Models, leveraging a proprietary dataset of brain magnetic resonance imaging scans. Following a comprehensive evaluation process, our study includes several key analyses. First, we conducted a qualitative evaluation by expert neuroradiologists. Second, we performed both quantitative and qualitative reconstruction fidelity studies for the generative models. Third, we carried out an ablation study to examine how the incorporation of histogram post-processing can enhance model performance. Finally, we executed a quantitative volumetric analysis of subcortical structures. Our findings indicate that some models effectively detect the primary alterations characterizing Down syndrome's brain anatomy, including a smaller cerebellum, enlarged ventricles, and cerebral cortex reduction, as well as the parietal lobe alterations caused by Alzheimer's disease.
Related papers
- Brain-Aware Readout Layers in GNNs: Advancing Alzheimer's early Detection and Neuroimaging [1.074960192271861]
This study introduces a novel brain-aware readout layer (BA readout layer) for Graph Neural Networks (GNNs)
By clustering brain regions based on functional connectivity and node embedding, this layer improves the GNN's capability to capture complex brain network characteristics.
Our results show that GNNs with the BA readout layer significantly outperform traditional models in predicting the Preclinical Alzheimer's Cognitive Composite (PACC) score.
arXiv Detail & Related papers (2024-10-03T05:04:45Z) - BrainSegFounder: Towards 3D Foundation Models for Neuroimage Segmentation [6.5388528484686885]
This study introduces a novel approach towards the creation of medical foundation models.
Our method involves a novel two-stage pretraining approach using vision transformers.
BrainFounder demonstrates a significant performance gain, surpassing the achievements of previous winning solutions.
arXiv Detail & Related papers (2024-06-14T19:49:45Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
We propose a novel model called BrainODE to achieve continuous modeling of dynamic brain signals.
By learning latent initial values and neural ODE functions from irregular time series, BrainODE effectively reconstructs brain signals at any time point.
arXiv Detail & Related papers (2024-04-30T10:53:30Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline [54.93591298333767]
Brain diffuser is a diffusion based end-to-end brain network generative model.
It exploits more structural connectivity features and disease-related information by analyzing disparities in structural brain networks across subjects.
For the case of Alzheimer's disease, the proposed model performs better than the results from existing toolkits on the Alzheimer's Disease Neuroimaging Initiative database.
arXiv Detail & Related papers (2023-03-11T14:04:58Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Transformer-based normative modelling for anomaly detection of early
schizophrenia [1.291405125557051]
We trained our model on 3D MRI scans of neurotypical individuals.
We obtained the likelihood of neurotypical controls and psychiatric patients with early-stage schizophrenia.
arXiv Detail & Related papers (2022-12-08T18:22:36Z) - BrainFormer: A Hybrid CNN-Transformer Model for Brain fMRI Data
Classification [31.83866719445596]
BrainFormer is a general hybrid Transformer architecture for brain disease classification with single fMRI volume.
BrainFormer is constructed by modeling the local cues within each voxel with 3D convolutions.
We evaluate BrainFormer on five independently acquired datasets including ABIDE, ADNI, MPILMBB, ADHD-200 and ECHO.
arXiv Detail & Related papers (2022-08-05T07:54:10Z) - Deep Learning Identifies Neuroimaging Signatures of Alzheimer's Disease
Using Structural and Synthesized Functional MRI Data [8.388888908045406]
We propose a potential solution by first learning a structural-to-functional transformation in brain MRI.
We then synthesize spatially matched functional images from large-scale structural scans.
We identify the temporal lobe to be the most predictive structural-region and the parieto-occipital lobe to be the most predictive functional-region of our model.
arXiv Detail & Related papers (2021-04-10T03:16:33Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.