論文の概要: Green vehicle routing problem that jointly optimizes delivery speed and routing based on the characteristics of electric vehicles
- arxiv url: http://arxiv.org/abs/2410.14691v1
- Date: Fri, 04 Oct 2024 08:08:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-27 05:40:55.755243
- Title: Green vehicle routing problem that jointly optimizes delivery speed and routing based on the characteristics of electric vehicles
- Title(参考訳): 電気自動車の特性に基づく配車速度とルーティングを協調的に最適化するグリーンカールーティング問題
- Authors: YY. Feng,
- Abstract要約: 本稿では,実車を用いたエネルギー消費モデルを構築した。
エネルギー消費モデルはまた、車両のスタート/ストップ、速度、距離、および負荷がエネルギー消費に与える影響も含んでいる。
改良された適応遺伝的アルゴリズムは、最もエネルギー効率のよい経路を解くために用いられる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The abundance of materials and the development of the economy have led to the flourishing of the logistics industry, but have also caused certain pollution. The research on GVRP (Green vehicle routing problem) for planning vehicle routes during transportation to reduce pollution is also increasingly developing. Further exploration is needed on how to integrate these research findings with real vehicles. This paper establishes an energy consumption model using real electric vehicles, fully considering the physical characteristics of each component of the vehicle. To avoid the distortion of energy consumption models affecting the results of route planning. The energy consumption model also incorporates the effects of vehicle start/stop, speed, distance, and load on energy consumption. In addition, a load first speed optimization algorithm was proposed, which selects the most suitable speed between every two delivery points while planning the route. In order to further reduce energy consumption while meeting the time window. Finally, an improved Adaptive Genetic Algorithm is used to solve for the most energy-efficient route. The experiment shows that the results of using this speed optimization algorithm are generally more energy-efficient than those without using this algorithm. The average energy consumption of constant speed delivery at different speeds is 17.16% higher than that after speed optimization. Provided a method that is closer to reality and easier for logistics companies to use. It also enriches the GVRP model.
- Abstract(参考訳): 材料の豊富さと経済の発展はロジスティクス産業の興隆につながったが、特定の汚染を引き起こした。
GVRP(グリーンカールーティング問題)は,交通機関における環境汚染低減のための車両経路計画の課題でもある。
これらの研究結果を実際の車両と統合するには、さらなる調査が必要である。
本稿では, 車両の各部品の物理的特性を十分に考慮し, 実車を用いたエネルギー消費モデルを構築した。
ルート計画の結果に影響を与えるエネルギー消費モデルの歪みを回避する。
エネルギー消費モデルはまた、車両のスタート/ストップ、速度、距離、および負荷がエネルギー消費に与える影響も含んでいる。
さらに,ロードファースト速度最適化アルゴリズムを提案し,経路計画中に2つの配送ポイント間で最適な速度を選択する。
タイムウインドウを満たしながら、エネルギー消費をさらに削減する。
最後に、改良された適応遺伝的アルゴリズムを用いて、最もエネルギー効率のよい経路を解く。
実験により、この速度最適化アルゴリズムは、一般に、このアルゴリズムを使用しないものよりもエネルギー効率が高いことが示された。
異なる速度での定速配送の平均エネルギー消費量は、速度最適化後の平均エネルギー消費量よりも17.16%高い。
現実に近づき、ロジスティクス企業が使いやすくする方法を提供する。
また、GVRPモデルも強化されている。
関連論文リスト
- A Scoping Review of Energy-Efficient Driving Behaviors and Applied
State-of-the-Art AI Methods [2.765388013062202]
エネルギー効率の良い運転行動や戦略に関する包括的な調査は行われていない。
多くの最先端AIモデルは、エコフレンドリーな運転スタイルの分析に応用されているが、概観は得られていない。
本稿では、生態的な運転行動とスタイルに関する詳細な文献レビューを行い、エネルギー消費に影響を与える運転要因について分析する。
論文 参考訳(メタデータ) (2024-03-04T13:57:34Z) - Traffic Smoothing Controllers for Autonomous Vehicles Using Deep
Reinforcement Learning and Real-World Trajectory Data [45.13152172664334]
我々は、自動運転車に展開できる交通平滑なクルーズコントローラーを設計する。
我々はテネシー州のI-24ハイウェイの実際の軌跡データを活用している。
その結果、低4%の自律走行車侵入速度で、多くの停止・停止波を示す軌道上で15%以上の燃料を節約できることが判明した。
論文 参考訳(メタデータ) (2024-01-18T00:50:41Z) - Using Reinforcement Learning for the Three-Dimensional Loading Capacitated Vehicle Routing Problem [40.50169360761464]
効率を上げるためのソリューションとして、協調車両ルーティングが提案されている。
現在の運用研究手法は、問題の大きさを増大させる非線形スケーリングに悩まされている。
約線形時間で3次元負荷容量化車両ルーティング問題を解くための強化学習モデルを開発した。
論文 参考訳(メタデータ) (2023-07-22T18:05:28Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - Uncertainty-Aware Vehicle Energy Efficiency Prediction using an Ensemble
of Neural Networks [2.147325264113341]
交通部門は温室効果ガス排出量の約25%を占めている。
エネルギー効率に影響を与える要因は、車両の種類、環境、運転者行動、気象条件である。
本研究では,予測不確実性を低減し,その不確実性を評価するために,深層ニューラルネットワーク(ENN)に基づくアンサンブル学習手法を提案する。
論文 参考訳(メタデータ) (2023-04-14T11:51:26Z) - Comparison and Evaluation of Methods for a Predict+Optimize Problem in
Renewable Energy [42.00952788334554]
本稿では2021年に開催されたIEEE-CIS Technical Challenge on Predict+ for Renewable Energy Schedulingについて述べる。
コンペティションにおける上位7つのソリューションの比較と評価を行う。
勝算法は異なるシナリオを予測し、サンプル平均近似法を用いて全てのシナリオに最適化した。
論文 参考訳(メタデータ) (2022-12-21T02:34:12Z) - A Multi-Objective approach to the Electric Vehicle Routing Problem [0.0]
電気自動車ルーティング問題(EVRP)は、燃料ベースの車からより健康的で効率的な電気自動車(EV)に移行するために、研究者や工業者から大きな関心を集めている。
以前の作業では、ロジスティクスや配送関連のソリューションをターゲットにしており、複数の停止を行った後、同質の商用EVが最初のポイントに戻らなければならない。
我々は、旅行時間と充電の累積コストを最小化する多目的最適化を行う。
論文 参考訳(メタデータ) (2022-08-26T05:09:59Z) - Model-based Decision Making with Imagination for Autonomous Parking [50.41076449007115]
提案アルゴリズムは,駐車前に結果を予測するための想像モデル,高速探索ランダムツリー(RRT)の改良,経路平滑化モジュールの3つの部分から構成される。
われわれのアルゴリズムは、実際のキネマティックな車両モデルに基づいており、実際の自動運転車にアルゴリズムを適用するのにより適している。
アルゴリズムの有効性を評価するため,3つの異なる駐車シナリオにおいて,従来のRTとアルゴリズムを比較した。
論文 参考訳(メタデータ) (2021-08-25T18:24:34Z) - Polestar: An Intelligent, Efficient and National-Wide Public
Transportation Routing Engine [43.09401975244128]
Polestarは、インテリジェントで効率的な公共交通機関ルーティングのためのデータ駆動型エンジンである。
具体的には,交通費の異なる公共交通機関をモデル化するための新しい公共交通グラフ(PTG)を提案する。
次に、効率的な経路候補生成のための効率的な局結合法と組み合わせた一般経路探索アルゴリズムを提案する。
2つの実世界のデータセットの実験は、効率性と有効性の両方の観点からPoestarの利点を実証している。
論文 参考訳(メタデータ) (2020-07-11T05:14:52Z) - Real-Time Monitoring and Driver Feedback to Promote Fuel Efficient
Driving [0.7087237546722617]
本稿では, リアルタイム自動監視とドライバフィードバックにより, 燃費効率の高い運転行動を促進する新しい枠組みを提案する。
歴史的データを用いたランダムフォレスト型分類モデルを用いて, 燃料非効率運転行動の同定を行う。
不効率な運転動作が検出されると、ファジィ論理推論システムを使用して、燃料効率の運転動作を維持するために運転者がすべきことを判断する。
論文 参考訳(メタデータ) (2020-07-03T09:23:53Z) - A Physics Model-Guided Online Bayesian Framework for Energy Management
of Extended Range Electric Delivery Vehicles [3.927161292818792]
本稿では、双方向の車両とクラウド接続を備えた配送車両において使用される、利用規則に基づくEMSを改善する。
物理モデルに基づくオンラインベイズフレームワークについて記述し,最終マイルのパッケージ配信に使用されるEREVの多数の使用済み駆動サンプルについて検証した。
実輸送155回の試験車両の燃料使用量の平均は12.8%減少した。
論文 参考訳(メタデータ) (2020-06-01T08:43:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。