論文の概要: Real-Time Energy-Optimal Path Planning for Electric Vehicles
- arxiv url: http://arxiv.org/abs/2411.12964v1
- Date: Wed, 20 Nov 2024 01:39:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:12:30.515466
- Title: Real-Time Energy-Optimal Path Planning for Electric Vehicles
- Title(参考訳): 電気自動車のリアルタイムエネルギー最適経路計画
- Authors: Saman Ahmadi, Guido Tack, Daniel Harabor, Philip Kilby, Mahdi Jalili,
- Abstract要約: エネルギー計算にキーカーの動力学パラメータを組み込んだ正確なエネルギーモデルを構築した。
また、2つの新しいオンラインリウェイト機能を導入し、より高速で、前処理のないパスフィニングを可能にします。
- 参考スコア(独自算出の注目度): 13.38255011577359
- License:
- Abstract: The rapid adoption of electric vehicles (EVs) in modern transport systems has made energy-aware routing a critical task in their successful integration, especially within large-scale networks. In cases where an EV's remaining energy is limited and charging locations are not easily accessible, some destinations may only be reachable through an energy-optimal path: a route that consumes less energy than all other alternatives. The feasibility of such energy-efficient paths depends heavily on the accuracy of the energy model used for planning, and thus failing to account for vehicle dynamics can lead to inaccurate energy estimates, rendering some planned routes infeasible in reality. This paper explores the impact of vehicle dynamics on energy-optimal path planning for EVs. We develop an accurate energy model that incorporates key vehicle dynamics parameters into energy calculations, thereby reducing the risk of planning infeasible paths under battery constraints. The paper also introduces two novel online reweighting functions that allow for a faster, pre-processing free, pathfinding in the presence of negative energy costs resulting from regenerative braking, making them ideal for real-time applications. Through extensive experimentation on real-world transport networks, we demonstrate that our approach considerably enhances energy-optimal pathfinding for EVs in both computational efficiency and energy estimation accuracy.
- Abstract(参考訳): 現代の輸送システムにおける電気自動車(EV)の急速な普及は、特に大規模ネットワークにおいて、エネルギーを意識したルーティングを成功に導く上で重要な課題となっている。
EVの残エネルギーが制限され、充電場所が容易にアクセスできない場合、いくつかの目的地はエネルギー最適化経路を通してのみ到達可能であり、他の他のどのルートよりも少ないエネルギーを消費するルートである。
このようなエネルギー効率の高い経路の実現性は、計画に使用されるエネルギーモデルの正確さに大きく依存しているため、車両の動力学を考慮しなければ不正確なエネルギー推定に繋がる可能性があるため、計画された経路のいくつかは現実には実現不可能である。
本稿では,電気自動車のエネルギー最適経路計画における車両動力学の影響について検討する。
本研究では,鍵となる車両の動力学パラメータをエネルギー計算に組み込んだ正確なエネルギーモデルを構築し,電池の制約の下で実現不可能な経路を計画するリスクを低減する。
また, 再生ブレーキによる負のエネルギーコストの存在下で, より高速で, より高速な前処理が可能な2つの新しいオンラインリウェイト機能を導入し, リアルタイムアプリケーションに最適であることを示す。
実世界の輸送ネットワークにおける広範な実験を通して,我々は,EVのエネルギー最適パスフィニングを,計算効率とエネルギー推定精度の両方において著しく向上させることを実証した。
関連論文リスト
- Green vehicle routing problem that jointly optimizes delivery speed and routing based on the characteristics of electric vehicles [0.0]
本稿では,実車を用いたエネルギー消費モデルを構築した。
エネルギー消費モデルはまた、車両のスタート/ストップ、速度、距離、および負荷がエネルギー消費に与える影響も含んでいる。
改良された適応遺伝的アルゴリズムは、最もエネルギー効率のよい経路を解くために用いられる。
論文 参考訳(メタデータ) (2024-10-04T08:08:15Z) - Data-Driven Probabilistic Energy Consumption Estimation for Battery
Electric Vehicles with Model Uncertainty [1.0787390511207684]
本稿では,モデル不確実性を伴う確率的ニューラルネットワークを用いた運転行動中心のEVエネルギー消費推定モデルを提案する。
モデル不確実性をニューラルネットワークに組み込むことで、モンテカルロを用いたニューラルネットワークのアンサンブルを作成しました。
提案手法は, 平均絶対誤差9.3%を達成し, 既存のEVエネルギー消費モデルよりも精度が高い。
論文 参考訳(メタデータ) (2023-07-02T04:30:20Z) - A Multi-Objective approach to the Electric Vehicle Routing Problem [0.0]
電気自動車ルーティング問題(EVRP)は、燃料ベースの車からより健康的で効率的な電気自動車(EV)に移行するために、研究者や工業者から大きな関心を集めている。
以前の作業では、ロジスティクスや配送関連のソリューションをターゲットにしており、複数の停止を行った後、同質の商用EVが最初のポイントに戻らなければならない。
我々は、旅行時間と充電の累積コストを最小化する多目的最適化を行う。
論文 参考訳(メタデータ) (2022-08-26T05:09:59Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
本稿では,フェデレートラーニングモデルに基づく不安度を測る新しい手法を提案する。
バッテリー消費を推定し、車両ネットワークにエネルギー効率の高いルートプランニングを提供する。
論文 参考訳(メタデータ) (2021-11-13T15:03:44Z) - Conv1D Energy-Aware Path Planner for Mobile Robots in Unstructured
Environments [9.230959086746736]
エネルギー消費は、困難な環境における移動ロボットのナビゲーションにおいて重要な役割を果たします。
本稿では,複雑な地形を横断するロボットの走行エネルギー消費量とエネルギー回収量を推定できるエネルギー認識経路プランナーの最初の結果について報告する。
この手法の新たな特徴は、1次元畳み込みニューラルネットワークを用いて、移動中にロボットが経験するのと同じ時間順に地形をシーケンシャルに解析することである。
論文 参考訳(メタデータ) (2021-04-04T08:13:54Z) - End-to-end Interpretable Neural Motion Planner [78.69295676456085]
複雑な都市環境での自律走行学習のためのニューラルモーションプランナー(NMP)を提案する。
我々は,生lidarデータとhdマップを入力とし,解釈可能な中間表現を生成する全体モデルを設計した。
北米のいくつかの都市で収集された実世界の運転データにおける我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2021-01-17T14:16:12Z) - Efficient algorithms for electric vehicles' min-max routing problem [4.640835690336652]
輸送部門から排出される温室効果ガスの増加は、企業や政府が電気自動車(EV)の増産と支援を図っている。
近年の都市化と電子商取引の進展により、輸送会社は従来の車両をEVに置き換え、持続的で環境に優しい運転の取り組みを強化している。
EV車両の展開は、限られた範囲を緩和し、バッテリー劣化率を軽減するために、効率的なルーティングと充電戦略を要求する。
論文 参考訳(メタデータ) (2020-08-07T18:45:26Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。