論文の概要: SIFM: A Foundation Model for Multi-granularity Arctic Sea Ice Forecasting
- arxiv url: http://arxiv.org/abs/2410.14732v1
- Date: Wed, 16 Oct 2024 08:52:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:16:25.520580
- Title: SIFM: A Foundation Model for Multi-granularity Arctic Sea Ice Forecasting
- Title(参考訳): SIFM:多粒性北極海氷予測の基礎モデル
- Authors: Jingyi Xu, Yeqi Luo, Weidong Yang, Keyi Liu, Shengnan Wang, Ben Fei, Lei Bai,
- Abstract要約: 本研究では,北極海氷再解析データから自然に得られた時間的多粒度を育成することを提案する。
我々の海氷基礎モデル(SIFM)は、粒内情報と粒間情報の両方を活用するように設計されている。
実験の結果,SIFMは特定の時間的粒度の深層学習モデルよりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 19.23074065880929
- License:
- Abstract: Arctic sea ice performs a vital role in global climate and has paramount impacts on both polar ecosystems and coastal communities. In the last few years, multiple deep learning based pan-Arctic sea ice concentration (SIC) forecasting methods have emerged and showcased superior performance over physics-based dynamical models. However, previous methods forecast SIC at a fixed temporal granularity, e.g. sub-seasonal or seasonal, thus only leveraging inter-granularity information and overlooking the plentiful inter-granularity correlations. SIC at various temporal granularities exhibits cumulative effects and are naturally consistent, with short-term fluctuations potentially impacting long-term trends and long-term trends provides effective hints for facilitating short-term forecasts in Arctic sea ice. Therefore, in this study, we propose to cultivate temporal multi-granularity that naturally derived from Arctic sea ice reanalysis data and provide a unified perspective for modeling SIC via our Sea Ice Foundation Model. SIFM is delicately designed to leverage both intra-granularity and inter-granularity information for capturing granularity-consistent representations that promote forecasting skills. Our extensive experiments show that SIFM outperforms off-the-shelf deep learning models for their specific temporal granularity.
- Abstract(参考訳): 北極海氷は地球規模の気候において重要な役割を担い、極圏生態系と沿岸社会の両方に最も大きな影響を与えている。
近年,複数の深層学習に基づくパン・アルキティック海氷濃度(SIC)予測法が出現し,物理モデルよりも優れた性能を示した。
しかし, 従来の手法では, SICを時間的粒度, eg サブシーズン, 季節的に予測し, 粒度間の情報を活用するだけで, 粒度間の相関関係を見越すことができる。
様々な時間的粒度のSICは累積効果を示し、自然に一定であり、短期的な変動は長期的傾向や長期的傾向に影響し、北極海氷の短期的な予測を促進する効果的なヒントとなる。
そこで本研究では,北極海氷再解析データから自然に得られた時間的多粒度を育成し,SICをモデル化するための統一的な視点を提供する。
SIFMは、粒界内情報と粒界間情報の両方を活用して、予測スキルを促進する粒界一貫性のある表現を捉えるように微妙に設計されている。
広範囲な実験により,SIFMは時間的粒度に対して,既成の深層学習モデルよりも優れていることが示された。
関連論文リスト
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
本研究では,FengWuグローバル気象予報モデルに基づくFengWu-Weather to Subseasonal (FengWu-W2S)を提案する。
我々は,FengWu-W2Sが大気環境を3~6週間先まで確実に予測し,マデン・ジュリア振動 (MJO) や北大西洋振動 (NAO) などの地球表面温度, 降水量, 地磁気高度, 季節内信号の予測能力を向上させることを実証した。
日時から季節時の予測誤差成長に関するアブレーション実験
論文 参考訳(メタデータ) (2024-11-15T13:44:37Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - Unicorn: U-Net for Sea Ice Forecasting with Convolutional Neural Ordinary Differential Equations [6.4020980835163765]
本稿では,毎週の海氷予測を目的とした,Unicornという新しい深層建築について紹介する。
本モデルでは,アーキテクチャ内に複数の時系列画像を統合することにより,予測性能を向上する。
論文 参考訳(メタデータ) (2024-05-07T01:17:06Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - Surrogate Modelling for Sea Ice Concentration using Lightweight Neural
Ensemble [0.3626013617212667]
本稿ではLANE-SIという適応的な代理モデル手法を提案する。
異なる損失関数を持つ比較的単純な深層学習モデルのアンサンブルを用いて、特定水域における海氷濃度の予測を行う。
我々は,カラ海における最先端物理ベースの予測システムSEAS5に対して,20%の改善を実現している。
論文 参考訳(メタデータ) (2023-12-07T14:48:30Z) - MT-IceNet -- A Spatial and Multi-Temporal Deep Learning Model for Arctic
Sea Ice Forecasting [0.31410342959104726]
我々は,北極海氷濃度(SIC)予測のためのMT-IceNet - UNetに基づく空間・多時間深層学習モデルを提案する。
提案モデルでは,6ヶ月のリードタイムで予測誤差を最大60%低減し,画素ごとのSIC予測に有望な予測性能を提供する。
論文 参考訳(メタデータ) (2023-08-08T18:18:31Z) - Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting [52.77986479871782]
地球温暖化は北極を海洋活動に利用し、信頼性の高い海氷予測の需要を生み出した。
本研究では,海氷予測のためのU-Netモデルの性能を,今後10日間にわたって検証した。
この深層学習モデルは、気象データの追加と複数の地域での訓練により、単純なベースラインをかなりの差で上回り、その品質を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-10-17T09:14:35Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Sea Ice Forecasting using Attention-based Ensemble LSTM [4.965782577704965]
本研究では,月毎の海氷範囲を最大1カ月前に予測するための,注意に基づくLong Short Term Memory(LSTM)アンサンブル手法を提案する。
日毎および月毎の衛星海氷データと,39年間にわたるERA5再分析から得られた大気および海洋の変動データを用いて,本手法がいくつかのベースラインを上回り,最近提案された深層学習モデルより優れていることを示す。
論文 参考訳(メタデータ) (2021-07-27T21:37:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。