Toward a Unified Graph-Based Representation of Medical Data for Precision Oncology Medicine
- URL: http://arxiv.org/abs/2410.14739v1
- Date: Thu, 17 Oct 2024 07:43:48 GMT
- Title: Toward a Unified Graph-Based Representation of Medical Data for Precision Oncology Medicine
- Authors: Davide Belluomo, Tiziana Calamoneri, Giacomo Paesani, Ivano Salvo,
- Abstract summary: We present a new unified graph-based representation of medical data, combining genetic information and medical records of patients with medical knowledge via a unique knowledge graph.
This approach allows us to infer meaningful information and explanations that would be unavailable by looking at each data set separately.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new unified graph-based representation of medical data, combining genetic information and medical records of patients with medical knowledge via a unique knowledge graph. This approach allows us to infer meaningful information and explanations that would be unavailable by looking at each data set separately. The systematic use of different databases, managed throughout the built knowledge graph, gives new insights toward a better understanding of oncology medicine. Indeed, we reduce some useful medical tasks to well-known problems in theoretical computer science for which efficient algorithms exist.
Related papers
- Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning [65.54680361074882]
Eye-gaze Guided Multi-modal Alignment (EGMA) framework harnesses eye-gaze data for better alignment of medical visual and textual features.
We conduct downstream tasks of image classification and image-text retrieval on four medical datasets.
arXiv Detail & Related papers (2024-03-19T03:59:14Z) - Enhancing Biomedical Lay Summarisation with External Knowledge Graphs [28.956500948255677]
We investigate the effectiveness of three different approaches for incorporating knowledge graphs within lay summarisation models.
Our results confirm that integrating graph-based domain knowledge can significantly benefit lay summarisation by substantially increasing the readability of generated text.
arXiv Detail & Related papers (2023-10-24T10:25:21Z) - Multi-modal Graph Learning over UMLS Knowledge Graphs [1.6311327256285293]
We propose a novel approach named Multi-Modal UMLS Graph Learning (MMUGL) for learning meaningful representations of medical concepts.
These representations are aggregated to represent entire patient visits and then fed into a sequence model to perform predictions at the granularity of multiple hospital visits of a patient.
arXiv Detail & Related papers (2023-07-10T10:16:57Z) - MD-Manifold: A Medical-Distance-Based Representation Learning Approach
for Medical Concept and Patient Representation [6.795388490479779]
Representing medical concepts for healthcare analytical tasks requires incorporating medical domain knowledge and prior data information.
Our proposed framework, MD-Manifold, introduces a novel approach to medical concept and patient representation.
It includes a new data augmentation approach, concept distance metric, and patient-patient network to incorporate crucial medical domain knowledge and prior data information.
arXiv Detail & Related papers (2023-04-30T18:58:32Z) - BERT Based Clinical Knowledge Extraction for Biomedical Knowledge Graph
Construction and Analysis [0.4893345190925178]
We propose an end-to-end approach for knowledge extraction and analysis from biomedical clinical notes.
The proposed framework can successfully extract relevant structured information with high accuracy.
arXiv Detail & Related papers (2023-04-21T14:45:33Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - A Literature Review of Recent Graph Embedding Techniques for Biomedical
Data [36.446560017794845]
Many graph-based learning methods have been proposed to analyze such type of data.
The main difficulty is how to handle high dimensionality and sparsity of the biomedical graphs.
graph embedding methods provide an effective and efficient way to address the above issues.
arXiv Detail & Related papers (2021-01-17T01:53:50Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
In hospitals, data are siloed to specific information systems that make the same information available under different modalities.
This offers unique opportunities to obtain and use at train-time those multiple views of the same information that might not always be available at test-time.
We propose an innovative framework that makes the most of available data by learning good representations of a multi-modal input that are resilient to modality dropping at test-time.
arXiv Detail & Related papers (2020-10-20T20:05:35Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.