論文の概要: Privacy for Free in the Over-Parameterized Regime
- arxiv url: http://arxiv.org/abs/2410.14787v1
- Date: Fri, 18 Oct 2024 18:01:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:21:41.655184
- Title: Privacy for Free in the Over-Parameterized Regime
- Title(参考訳): 過度にパラメータ化されたレジームにおける自由のプライバシ
- Authors: Simone Bombari, Marco Mondelli,
- Abstract要約: ディファレンシャル・プライベート勾配降下(DP-GD)は、トレーニングデータのプライバシを保証してディープラーニングモデルをトレーニングする一般的なアルゴリズムである。
本研究では,2次損失を持つ一般的なランダム特徴モデルにおいて,十分大きな$p$に対して,プライバシが無償で取得可能であること,すなわち$left|R_P right| = o(1)$,プライバシパラメータ$varepsilon$が一定の順序を持つ場合に限らず,強いプライベート設定$varepsilon = o(1)$ が得られることを示す。
- 参考スコア(独自算出の注目度): 19.261178173399784
- License:
- Abstract: Differentially private gradient descent (DP-GD) is a popular algorithm to train deep learning models with provable guarantees on the privacy of the training data. In the last decade, the problem of understanding its performance cost with respect to standard GD has received remarkable attention from the research community, which formally derived upper bounds on the excess population risk $R_{P}$ in different learning settings. However, existing bounds typically degrade with over-parameterization, i.e., as the number of parameters $p$ gets larger than the number of training samples $n$ -- a regime which is ubiquitous in current deep-learning practice. As a result, the lack of theoretical insights leaves practitioners without clear guidance, leading some to reduce the effective number of trainable parameters to improve performance, while others use larger models to achieve better results through scale. In this work, we show that in the popular random features model with quadratic loss, for any sufficiently large $p$, privacy can be obtained for free, i.e., $\left|R_{P} \right| = o(1)$, not only when the privacy parameter $\varepsilon$ has constant order, but also in the strongly private setting $\varepsilon = o(1)$. This challenges the common wisdom that over-parameterization inherently hinders performance in private learning.
- Abstract(参考訳): ディファレンシャル・プライベート勾配降下(DP-GD)は、トレーニングデータのプライバシを保証してディープラーニングモデルをトレーニングする一般的なアルゴリズムである。
過去10年間で、標準GDに対する性能コストの理解という問題は研究コミュニティから目覚ましい注目を集めており、これは学習環境の異なる場合の過剰な人口リスクの上限であるR_{P}$を正式に引き起こしている。
しかし、既存のバウンダリは通常、オーバーパラメータ化によって劣化する。すなわち、パラメータの数が、現在のディープラーニングの実践においてユビキタスであるトレーニングサンプルの数が$n$より大きくなるにつれて、$p$が大きくなる。
その結果、理論的な洞察が欠如しているため、実践者は明確なガイダンスを持たず、パフォーマンスを改善するためにトレーニング可能なパラメータを効果的に削減する者もいれば、より大きなモデルを使用してスケールを通じてより良い結果を得る者もいる。
本研究は,2次損失を持つ一般的なランダム特徴モデルにおいて,十分大きな$p$に対して,プライバシを無償で得ること,すなわち$\left|R_{P} \right| = o(1)$,プライバシーパラメータ$\varepsilon$が一定の順序を持つ場合に限らず,強いプライベート設定$\varepsilon = o(1)$が得られることを示す。
これは、オーバーパラメータ化が本質的にプライベートラーニングのパフォーマンスを妨げるという共通の知恵に挑戦する。
関連論文リスト
- A Generalized Shuffle Framework for Privacy Amplification: Strengthening Privacy Guarantees and Enhancing Utility [4.7712438974100255]
パーソナライズされたプライバシパラメータで$(epsilon_i,delta_i)$-PLDP設定をシャッフルする方法を示す。
shuffled $(epsilon_i,delta_i)$-PLDP process approximately saves $mu$-Gaussian Differential Privacy with mu = sqrtfrac2sum_i=1n frac1-delta_i1+eepsilon_i-max_ifrac1-delta_i1+e
論文 参考訳(メタデータ) (2023-12-22T02:31:46Z) - Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis
Testing: A Lesson From Fano [83.5933307263932]
本研究では,離散データに対するデータ再構成攻撃について検討し,仮説テストの枠組みの下で解析する。
基礎となるプライベートデータが$M$のセットから値を取ると、ターゲットのプライバシパラメータ$epsilon$が$O(log M)$になる。
論文 参考訳(メタデータ) (2022-10-24T23:50:12Z) - Fine-Tuning with Differential Privacy Necessitates an Additional
Hyperparameter Search [38.83524780461911]
トレーニング済みニューラルネットワークで微調整されたレイヤを慎重に選択することで、プライバシと正確性の間に新たな最先端のトレードオフを確立することができることを示す。
ImageNetで事前トレーニングされたモデルに対して、CIFAR-100上で$(varepsilon, delta)= (2, 10-5)$に対して77.9%の精度を達成する。
論文 参考訳(メタデータ) (2022-10-05T11:32:49Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
論文 参考訳(メタデータ) (2022-06-06T13:49:37Z) - Large Scale Transfer Learning for Differentially Private Image
Classification [51.10365553035979]
Differential Privacy(DP)は、個別のサンプルレベルのプライバシで機械学習モデルをトレーニングするための正式なフレームワークを提供する。
DP-SGDを用いたプライベートトレーニングは、個々のサンプル勾配にノイズを注入することで漏れを防ぐ。
この結果は非常に魅力的であるが,DP-SGDを用いた大規模モデルのトレーニングの計算コストは,非プライベートトレーニングよりもかなり高い。
論文 参考訳(メタデータ) (2022-05-06T01:22:20Z) - Differentially Private Temporal Difference Learning with Stochastic
Nonconvex-Strongly-Concave Optimization [17.361143427007224]
時間差(TD)学習は、強化学習における政策を評価するために広く用いられている手法である。
本稿では,非線形値関数を用いたTD学習におけるプライバシ保護について考察する。
DPTDは、トランジションに符号化された機密情報に対して$epsilon,n-differential privacy (DP) を保証し、TD学習の本来のパワーを維持できることを示す。
論文 参考訳(メタデータ) (2022-01-25T16:48:29Z) - Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for
Private Learning [74.73901662374921]
差分プライベートモデルは、モデルが多数のトレーニング可能なパラメータを含む場合、ユーティリティを劇的に劣化させる。
偏微分プライベート深層モデルの精度向上のためのアルゴリズムemphGradient Embedding Perturbation (GEP)を提案する。
論文 参考訳(メタデータ) (2021-02-25T04:29:58Z) - Learning with User-Level Privacy [61.62978104304273]
ユーザレベルの差分プライバシー制約下での学習課題を,アルゴリズムを用いて解析する。
個々のサンプルのプライバシーのみを保証するのではなく、ユーザレベルのdpはユーザの貢献全体を保護します。
プライバシコストが$tau$に比例した$K$適応的に選択されたクエリのシーケンスにプライベートに答えるアルゴリズムを導き出し、私たちが検討する学習タスクを解決するためにそれを適用します。
論文 参考訳(メタデータ) (2021-02-23T18:25:13Z) - On the Intrinsic Differential Privacy of Bagging [69.70602220716718]
我々は、Bagingが、同じプライバシー予算を持つ最先端の差分プライベート機械学習手法よりも、はるかに高い精度を達成することを示す。
実験結果から,Bagingは,同一のプライバシー予算を持つ最先端の差分プライベート機械学習手法よりも格段に高い精度を達成できることが示された。
論文 参考訳(メタデータ) (2020-08-22T14:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。