論文の概要: SPRIG: Improving Large Language Model Performance by System Prompt Optimization
- arxiv url: http://arxiv.org/abs/2410.14826v1
- Date: Fri, 18 Oct 2024 18:51:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:22:22.772721
- Title: SPRIG: Improving Large Language Model Performance by System Prompt Optimization
- Title(参考訳): SPRIG:システムプロンプト最適化による大規模言語モデルの性能向上
- Authors: Lechen Zhang, Tolga Ergen, Lajanugen Logeswaran, Moontae Lee, David Jurgens,
- Abstract要約: 大きな言語モデル(LLM)は多くのシナリオで印象的な機能を示しているが、そのパフォーマンスはプロンプトの選択に依存している。
本研究では,モデルの性能を最大化するために,既定成分からのプロンプトを反復的に構築する編集に基づく遺伝的アルゴリズムであるSPRIGを提案する。
47種類のタスクの集合に対して,システムプロンプトの性能を評価し,一般化性を確保する。
- 参考スコア(独自算出の注目度): 45.96513122345295
- License:
- Abstract: Large Language Models (LLMs) have shown impressive capabilities in many scenarios, but their performance depends, in part, on the choice of prompt. Past research has focused on optimizing prompts specific to a task. However, much less attention has been given to optimizing the general instructions included in a prompt, known as a system prompt. To address this gap, we propose SPRIG, an edit-based genetic algorithm that iteratively constructs prompts from prespecified components to maximize the model's performance in general scenarios. We evaluate the performance of system prompts on a collection of 47 different types of tasks to ensure generalizability. Our study finds that a single optimized system prompt performs on par with task prompts optimized for each individual task. Moreover, combining system and task-level optimizations leads to further improvement, which showcases their complementary nature. Experiments also reveal that the optimized system prompts generalize effectively across model families, parameter sizes, and languages. This study provides insights into the role of system-level instructions in maximizing LLM potential.
- Abstract(参考訳): 大きな言語モデル(LLM)は多くのシナリオで印象的な機能を示しているが、そのパフォーマンスは部分的にはプロンプトの選択に依存している。
過去の研究は、タスク固有のプロンプトの最適化に重点を置いてきた。
しかし、システムプロンプトとして知られるプロンプトに含まれる一般的な命令を最適化するためには、はるかに注意が払われていない。
このギャップに対処するために、SPRIGを提案する。SPRIGは、既定成分からのプロンプトを反復的に構築し、一般的なシナリオにおけるモデルの性能を最大化する。
47種類のタスクの集合に対して,システムプロンプトの性能を評価し,一般化性を確保する。
本研究は,各タスクに最適化されたタスクプロンプトと同等に,単一の最適化されたシステムプロンプトが実行可能であることを明らかにする。
さらに、システムとタスクレベルの最適化を組み合わせることで、さらなる改善がもたらされる。
実験により、最適化されたシステムはモデルファミリ、パラメータサイズ、言語を効果的に一般化することが明らかとなった。
本研究では,LLMポテンシャルの最大化におけるシステムレベル命令の役割について考察する。
関連論文リスト
- QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
クエリ依存型プロンプト最適化(QPO)を導入し、入力クエリに合わせて最適なプロンプトを生成するために、小さな事前訓練された言語モデルを反復的に微調整する。
我々は、オープンソースのタスクに様々なプロンプトをベンチマークする副産物として、すでに大量に存在するオフラインのプロンプトデータから洞察を得る。
様々なLLMスケールと多様なNLPおよび数学タスクの実験は、ゼロショットと少数ショットの両方のシナリオにおいて、我々の手法の有効性とコスト効率を実証している。
論文 参考訳(メタデータ) (2024-08-20T03:06:48Z) - Large Language Models Prompting With Episodic Memory [53.8690170372303]
本稿では,POEM(PrOmpting with Episodic Memory)を提案する。
テストフェーズでは、各テストクエリのサンプルのシーケンスを最適化し、エピソードメモリにおけるトップkで最も類似したトレーニング例から最も高い合計報酬を得るシーケンスを選択する。
その結果,POEMはテキスト分類タスクにおいてTEMPERAやRLPromptといった最近の技術よりも5.3%向上していることがわかった。
論文 参考訳(メタデータ) (2024-08-14T11:19:28Z) - MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
異なるプロンプトを異なるLarge Language Models (LLM) に適応させることで,NLP の様々な下流タスクにまたがる機能の向上が期待できる。
次に、下流タスクにおける各LLMに対して、元のプロンプトを最適化するモデル適応プロンプト(MAPO)手法を提案する。
論文 参考訳(メタデータ) (2024-07-04T18:39:59Z) - Localized Zeroth-Order Prompt Optimization [54.964765668688806]
そこで我々は,ZOPO(Localized zeroth-order prompt optimization)という新しいアルゴリズムを提案する。
ZOPOはニューラル・タンジェント・カーネルをベースとしたガウス法を標準ゼロ階次最適化に取り入れ、高速な局所最適探索を高速化する。
注目すべきは、ZOPOは最適化性能とクエリ効率の両方の観点から、既存のベースラインを上回っていることだ。
論文 参考訳(メタデータ) (2024-03-05T14:18:15Z) - FIPO: Free-form Instruction-oriented Prompt Optimization with Preference Dataset and Modular Fine-tuning Schema [36.65009632307124]
大規模言語モデル(LLM)のタスク性能向上のためのFIPO(Free-from Instruction-oriented Prompt Optimization)を提案する。
FIPOはモジュール型のAPOテンプレートを使用して、単純で最適化されたプロンプトを生成するために、ナイーブなタスク命令、オプションの命令応答、オプションの接地真理を動的に統合する。
5つの公開ベンチマークと6つのテストモデルでFIPOフレームワークを検証する。
論文 参考訳(メタデータ) (2024-02-19T03:56:44Z) - Large Language Models as Optimizers [106.52386531624532]
本稿では,大規模言語モデル (LLM) をプロンプトとして活用するためのシンプルで効果的な手法である Prompting (OPRO) を提案する。
各最適化ステップにおいて、LLMは、前述した値を含むプロンプトから新しい解を生成する。
OPROにより最適化された最良のプロンプトは、GSM8Kで最大8%、Big-Bench Hardタスクで最大50%向上することを示した。
論文 参考訳(メタデータ) (2023-09-07T00:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。