Multi-Task Dynamic Pricing in Credit Market with Contextual Information
- URL: http://arxiv.org/abs/2410.14839v2
- Date: Fri, 25 Oct 2024 20:45:39 GMT
- Title: Multi-Task Dynamic Pricing in Credit Market with Contextual Information
- Authors: Adel Javanmard, Jingwei Ji, Renyuan Xu,
- Abstract summary: We study the dynamic pricing problem faced by a broker that buys and sells a large number of financial securities in the credit market.
One challenge in pricing these securities is their infrequent trading, which leads to insufficient data for individual pricing.
We propose a multi-task dynamic pricing framework that leverages these shared structures across securities, enhancing pricing accuracy through learning.
- Score: 10.407593835994433
- License:
- Abstract: We study the dynamic pricing problem faced by a broker that buys and sells a large number of financial securities in the credit market, such as corporate bonds, government bonds, loans, and other credit-related securities. One challenge in pricing these securities is their infrequent trading, which leads to insufficient data for individual pricing. However, many of these securities share structural features that can be utilized. Building on this, we propose a multi-task dynamic pricing framework that leverages these shared structures across securities, enhancing pricing accuracy through learning. In our framework, a security is fully characterized by a $d$ dimensional contextual/feature vector. The customer will buy (sell) the security from the broker if the broker quotes a price lower (higher) than that of the competitors. We assume a linear contextual model for the competitor's pricing, with unknown parameters a priori. The parameters for pricing different securities may or may not be similar to each other. The firm's objective is to minimize the expected regret, namely, the expected revenue loss against a clairvoyant policy which has the knowledge of the parameters of the competitor's pricing model. We show that the regret of our policy is better than both the policy that treats each security individually and the policy that treats all securities as the same. Moreover, the regret is bounded by $\tilde{O} ( \delta_{\max} \sqrt{T M d} + M d ) $, where $M$ is the number of securities and $\delta_{\max}$ characterizes the overall dissimilarity across securities in the basket.
Related papers
- Fairness-aware Contextual Dynamic Pricing with Strategic Buyers [4.883313216485195]
We propose a dynamic pricing policy that simultaneously achieves price fairness and discourages strategic behaviors.
Our policy achieves an upper bound of $O(sqrt+H(T))$ regret over $T$ time horizons.
We also prove an $Omega(sqrtT)$ regret lower bound of any pricing policy under our problem setting.
arXiv Detail & Related papers (2025-01-25T22:30:37Z) - Dynamic Pricing in Securities Lending Market: Application in Revenue Optimization for an Agent Lender Portfolio [5.006071344026168]
We show that existing contextual bandit frameworks can be successfully utilized in the securities lending market.
We show that the contextual bandit approach can consistently outperform typical approaches by at least 15% in terms of total revenue generated.
arXiv Detail & Related papers (2024-07-18T17:42:37Z) - A Primal-Dual Online Learning Approach for Dynamic Pricing of Sequentially Displayed Complementary Items under Sale Constraints [54.46126953873298]
We address the problem of dynamically pricing complementary items that are sequentially displayed to customers.
Coherent pricing policies for complementary items are essential because optimizing the pricing of each item individually is ineffective.
We empirically evaluate our approach using synthetic settings randomly generated from real-world data, and compare its performance in terms of constraints violation and regret.
arXiv Detail & Related papers (2024-07-08T09:55:31Z) - Reinforcement Learning for Corporate Bond Trading: A Sell Side Perspective [0.0]
A corporate bond trader provides a quote by adding a spread over a textitprevalent market price
For illiquid bonds, the market price is harder to observe, and traders often resort to available benchmark bond prices.
In this paper, we approach the estimation of an optimal bid-ask spread quoting strategy in a data driven manner and show that it can be learned using Reinforcement Learning.
arXiv Detail & Related papers (2024-06-18T18:02:35Z) - A Contextual Online Learning Theory of Brokerage [8.049531918823758]
We study the role of contextual information in the online learning problem of brokerage between traders.
We show that if the bounded density assumption is lifted, then the problem becomes unlearnable.
arXiv Detail & Related papers (2024-05-22T18:38:05Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Contextual Dynamic Pricing with Strategic Buyers [93.97401997137564]
We study the contextual dynamic pricing problem with strategic buyers.
Seller does not observe the buyer's true feature, but a manipulated feature according to buyers' strategic behavior.
We propose a strategic dynamic pricing policy that incorporates the buyers' strategic behavior into the online learning to maximize the seller's cumulative revenue.
arXiv Detail & Related papers (2023-07-08T23:06:42Z) - Autoregressive Bandits [58.46584210388307]
We propose a novel online learning setting, Autoregressive Bandits, in which the observed reward is governed by an autoregressive process of order $k$.
We show that, under mild assumptions on the reward process, the optimal policy can be conveniently computed.
We then devise a new optimistic regret minimization algorithm, namely, AutoRegressive Upper Confidence Bound (AR-UCB), that suffers sublinear regret of order $widetildemathcalO left( frac(k+1)3/2sqrtnT (1-G
arXiv Detail & Related papers (2022-12-12T21:37:36Z) - Quantum computational finance: martingale asset pricing for incomplete
markets [69.73491758935712]
We show that a variety of quantum techniques can be applied to the pricing problem in finance.
We discuss three different methods that are distinct from previous works.
arXiv Detail & Related papers (2022-09-19T09:22:01Z) - Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning [100.73223416589596]
We propose a cost-sensitive portfolio selection method with deep reinforcement learning.
Specifically, a novel two-stream portfolio policy network is devised to extract both price series patterns and asset correlations.
A new cost-sensitive reward function is developed to maximize the accumulated return and constrain both costs via reinforcement learning.
arXiv Detail & Related papers (2020-03-06T06:28:17Z) - Dynamic Incentive-aware Learning: Robust Pricing in Contextual Auctions [13.234975857626752]
We consider the problem of robust learning of reserve prices against strategic buyers in contextual second-price auctions.
We propose learning policies that are robust to such strategic behavior.
arXiv Detail & Related papers (2020-02-25T19:00:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.