LangGFM: A Large Language Model Alone Can be a Powerful Graph Foundation Model
- URL: http://arxiv.org/abs/2410.14961v1
- Date: Sat, 19 Oct 2024 03:27:19 GMT
- Title: LangGFM: A Large Language Model Alone Can be a Powerful Graph Foundation Model
- Authors: Tianqianjin Lin, Pengwei Yan, Kaisong Song, Zhuoren Jiang, Yangyang Kang, Jun Lin, Weikang Yuan, Junjie Cao, Changlong Sun, Xiaozhong Liu,
- Abstract summary: Graph foundation models (GFMs) have recently gained significant attention.
Current research tends to focus on specific subsets of graph learning tasks.
We propose GFMBench-a systematic and comprehensive benchmark comprising 26 datasets.
We also introduce LangGFM, a novel GFM that relies entirely on large language models.
- Score: 27.047809869136458
- License:
- Abstract: Graph foundation models (GFMs) have recently gained significant attention. However, the unique data processing and evaluation setups employed by different studies hinder a deeper understanding of their progress. Additionally, current research tends to focus on specific subsets of graph learning tasks, such as structural tasks, node-level tasks, or classification tasks. As a result, they often incorporate specialized modules tailored to particular task types, losing their applicability to other graph learning tasks and contradicting the original intent of foundation models to be universal. Therefore, to enhance consistency, coverage, and diversity across domains, tasks, and research interests within the graph learning community in the evaluation of GFMs, we propose GFMBench-a systematic and comprehensive benchmark comprising 26 datasets. Moreover, we introduce LangGFM, a novel GFM that relies entirely on large language models. By revisiting and exploring the effective graph textualization principles, as well as repurposing successful techniques from graph augmentation and graph self-supervised learning within the language space, LangGFM achieves performance on par with or exceeding the state of the art across GFMBench, which can offer us new perspectives, experiences, and baselines to drive forward the evolution of GFMs.
Related papers
- Graph Foundation Models for Recommendation: A Comprehensive Survey [55.70529188101446]
Large language models (LLMs) are designed to process and comprehend natural language, making both approaches highly effective and widely adopted.
Recent research has focused on graph foundation models (GFMs)
GFMs integrate the strengths of GNNs and LLMs to model complex RS problems more efficiently by leveraging the graph-based structure of user-item relationships alongside textual understanding.
arXiv Detail & Related papers (2025-02-12T12:13:51Z) - GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation [84.41557981816077]
We introduce GFM-RAG, a novel graph foundation model (GFM) for retrieval augmented generation.
GFM-RAG is powered by an innovative graph neural network that reasons over graph structure to capture complex query-knowledge relationships.
It achieves state-of-the-art performance while maintaining efficiency and alignment with neural scaling laws.
arXiv Detail & Related papers (2025-02-03T07:04:29Z) - Towards Graph Foundation Models: Learning Generalities Across Graphs via Task-Trees [50.78679002846741]
We introduce a novel approach for learning cross-task generalities in graphs.
We propose task-trees as basic learning instances to align task spaces on graphs.
Our findings indicate that when a graph neural network is pretrained on diverse task-trees, it acquires transferable knowledge.
arXiv Detail & Related papers (2024-12-21T02:07:43Z) - Towards Graph Foundation Models: The Perspective of Zero-shot Reasoning on Knowledge Graphs [14.392577069212292]
We introduce SCORE, a unified graph reasoning framework that effectively generalizes diverse graph tasks using zero-shot learning.
We evaluate SCORE using 38 diverse graph datasets, covering node-level, link-level, and graph-level tasks across multiple domains.
arXiv Detail & Related papers (2024-10-16T14:26:08Z) - Towards Vision-Language Geo-Foundation Model: A Survey [65.70547895998541]
Vision-Language Foundation Models (VLFMs) have made remarkable progress on various multimodal tasks.
This paper thoroughly reviews VLGFMs, summarizing and analyzing recent developments in the field.
arXiv Detail & Related papers (2024-06-13T17:57:30Z) - A Survey on Self-Supervised Graph Foundation Models: Knowledge-Based Perspective [14.403179370556332]
Graph self-supervised learning (SSL) is now a go-to method for pre-training graph foundation models (GFMs)
We propose a knowledge-based taxonomy, which categorizes self-supervised graph models by the specific graph knowledge utilized.
arXiv Detail & Related papers (2024-03-24T13:10:09Z) - Position: Graph Foundation Models are Already Here [53.737868336014735]
Graph Foundation Models (GFMs) are emerging as a significant research topic in the graph domain.
We propose a novel perspective for the GFM development by advocating for a graph vocabulary''
This perspective can potentially advance the future GFM design in line with the neural scaling laws.
arXiv Detail & Related papers (2024-02-03T17:24:36Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
Foundation models have emerged as critical components in a variety of artificial intelligence applications.
The capabilities of foundation models to generalize and adapt motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm.
This article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies.
arXiv Detail & Related papers (2023-10-18T09:31:21Z) - GPT4Graph: Can Large Language Models Understand Graph Structured Data ?
An Empirical Evaluation and Benchmarking [17.7473474499538]
Large language models like ChatGPT have become indispensable to artificial general intelligence.
In this study, we conduct an investigation to assess the proficiency of LLMs in comprehending graph data.
Our findings contribute valuable insights towards bridging the gap between language models and graph understanding.
arXiv Detail & Related papers (2023-05-24T11:53:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.