論文の概要: Do Large Language Models Truly Grasp Mathematics? An Empirical Exploration From Cognitive Psychology
- arxiv url: http://arxiv.org/abs/2410.14979v5
- Date: Fri, 15 Nov 2024 12:46:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 12:19:56.732977
- Title: Do Large Language Models Truly Grasp Mathematics? An Empirical Exploration From Cognitive Psychology
- Title(参考訳): 大規模言語モデルは真にグレープな数学か? : 認知心理学からの実証的な探索
- Authors: Wei Xie, Shuoyoucheng Ma, Zhenhua Wang, Enze Wang, Kai Chen, Xiaobing Sun, Baosheng Wang,
- Abstract要約: 提案手法は,Chains of Thoughtプロンプトを用いても,修正されたCRT問題を解く際の誤り率が高いことを示す。
具体的には、従来の質問と比べて平均精度が最大50%低下した。
この発見は、LLMが人間に匹敵する真の数学的推論能力を持っているという信念に挑戦する。
- 参考スコア(独自算出の注目度): 13.964263002704582
- License:
- Abstract: The cognitive mechanism by which Large Language Models (LLMs) solve mathematical problems remains a widely debated and unresolved issue. Currently, there is little interpretable experimental evidence that connects LLMs' problem-solving with human cognitive psychology.To determine if LLMs possess human-like mathematical reasoning, we modified the problems used in the human Cognitive Reflection Test (CRT). Our results show that, even with the use of Chains of Thought (CoT) prompts, mainstream LLMs, including the latest o1 model (noted for its reasoning capabilities), have a high error rate when solving these modified CRT problems. Specifically, the average accuracy rate dropped by up to 50% compared to the original questions.Further analysis of LLMs' incorrect answers suggests that they primarily rely on pattern matching from their training data, which aligns more with human intuition (System 1 thinking) rather than with human-like reasoning (System 2 thinking). This finding challenges the belief that LLMs have genuine mathematical reasoning abilities comparable to humans. As a result, this work may adjust overly optimistic views on LLMs' progress towards artificial general intelligence.
- Abstract(参考訳): 大言語モデル(LLM)が数学的問題を解く認知メカニズムは、広く議論され未解決の課題である。
現在、LLMの問題解決と人間の認知心理学を結びつける、解釈可能な実験的証拠はほとんどなく、LLMが人間のような数学的推論を持っているかどうかを判断するために、人間の認知反射テスト(CRT)で使用される問題を修正した。
提案手法は, 思考の連鎖(CoT)プロンプトを用いても, 最新のo1モデルを含む主流のLSMは, それらの修正されたCRT問題を解く際のエラー率が高いことを示す。
特に,従来の質問に比べて平均精度が最大50%低下したことから,LLMの誤答の分析は,人間的な推論(システム2思考)よりも人間の直観(システム1思考)のパターンマッチングに大きく依存していることが示唆された。
この発見は、LLMが人間に匹敵する真の数学的推論能力を持っているという信念に挑戦する。
結果として、この研究はLLMの人工知能への進歩に関する過度に楽観的な見解を調整することができる。
関連論文リスト
- On Memorization of Large Language Models in Logical Reasoning [70.94164038947078]
大きな言語モデル(LLM)は、挑戦的な推論ベンチマークで優れたパフォーマンスを達成するが、基本的な推論ミスを発生させることもできる。
1つの仮説は、より高度でほぼ飽和した性能は、類似した問題の記憶が原因ではないかというものである。
微調整は暗記を重くするが,常に一般化性能を向上することを示す。
論文 参考訳(メタデータ) (2024-10-30T15:31:54Z) - LLM The Genius Paradox: A Linguistic and Math Expert's Struggle with Simple Word-based Counting Problems [28.72485319617863]
LLMは、人間が扱いやすいようないくつかの基本的なタスク、例えば単語トラウベリーの文字数rを数えるのに苦労する。
我々は,高度な数学的およびコーディング推論能力の伝達可能性について,特殊なLCMから単純なカウントタスクまでの測定を行う。
微調整や文脈内学習といった戦略と比較すると、係り受け推論はLLMのタスクをより知覚するのに役立つ最も堅牢で効率的な方法であることがわかる。
論文 参考訳(メタデータ) (2024-10-18T04:17:16Z) - Not All LLM Reasoners Are Created Equal [58.236453890457476]
小学校数学におけるLLMの解答能力の深さについて検討する。
既存の数式語問題に対して,それらの性能を併用して評価する。
論文 参考訳(メタデータ) (2024-10-02T17:01:10Z) - Cognitive phantoms in LLMs through the lens of latent variables [0.3441021278275805]
大規模言語モデル(LLM)はますます現実のアプリケーションに到達し、それらの振る舞いをよりよく理解する必要がある。
近年のLCMに対する心理測定調査では、LLMの人間らしい特徴が報告されており、潜在的に影響する可能性がある。
このアプローチは有効性の問題に悩まされており、これらの特性がLLMに存在し、人間用に設計されたツールで測定可能であることを前提としている。
本研究では,人間と3人のLDMの潜在的性格構造を2つの評価されたパーソナリティアンケートを用いて比較することにより,この問題を考察する。
論文 参考訳(メタデータ) (2024-09-06T12:42:35Z) - Achieving >97% on GSM8K: Deeply Understanding the Problems Makes LLMs Better Solvers for Math Word Problems [50.76385564061713]
CoT(Chain-of-Thought)のプロンプトにより、さまざまな推論タスクにわたるLLM(Large Language Models)のパフォーマンスが向上した。
CoTは通常、セマンティックな誤解エラー、計算エラー、ステップミスという3つの落とし穴に悩まされる。
意味的誤解の誤りに対処し,LLMの数学的問題解決能力を改善するために,DUP(Deeply Understanding the Problems)を提案する。
論文 参考訳(メタデータ) (2024-04-23T12:16:05Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
大規模言語モデル (LLM) は、様々な数学的推論ベンチマークで顕著な性能を達成している。
1つの必須かつ頻繁な証拠は、数学の質問がわずかに変更されたとき、LLMは誤って振る舞うことができることである。
このことは, LLMの数学推論能力の頑健性を評価するために, 幅広い質問のバリエーションを試すことによるものである。
論文 参考訳(メタデータ) (2024-02-29T15:26:14Z) - Do Language Models Exhibit the Same Cognitive Biases in Problem Solving as Human Learners? [140.9751389452011]
本研究では,大言語モデル(LLM)の偏りを,算術語問題を解く際に,子どもに知られているものと関連づけて検討する。
我々は,これらの各テストに対して,問題特徴のきめ細かい制御を可能にするニューロシンボリックアプローチを用いて,新しい単語問題を生成する。
論文 参考訳(メタデータ) (2024-01-31T18:48:20Z) - Large Language Models are Better Reasoners with Self-Verification [48.534270563880845]
大規模言語モデル(LLM)は、いくつかの自然言語処理タスクにおいて強力な推論能力を示している。
思考の連鎖(CoT)を促進させるLLMは、個別のミスに非常に敏感な、多段階のプロンプトと多段階の予測を必要とする。
また,LLMにも同様な自己検証能力があることを示す。
論文 参考訳(メタデータ) (2022-12-19T15:51:52Z) - Thinking Fast and Slow in Large Language Models [0.08057006406834465]
大規模言語モデル(LLM)は、現在、人間のコミュニケーションと日常の生活を結び付けるAIシステムの最前線にある。
本研究では, GPT-3 のような LLM は人間の直感に類似した行動を示し,それに伴う認知的誤りを示す。
論文 参考訳(メタデータ) (2022-12-10T05:07:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。