論文の概要: Learning Infinite-Horizon Average-Reward Linear Mixture MDPs of Bounded Span
- arxiv url: http://arxiv.org/abs/2410.14992v1
- Date: Sat, 19 Oct 2024 05:45:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:16:19.713825
- Title: Learning Infinite-Horizon Average-Reward Linear Mixture MDPs of Bounded Span
- Title(参考訳): 境界スパンの無限水平平均逆線形混合MDPの学習
- Authors: Woojin Chae, Kihyuk Hong, Yufan Zhang, Ambuj Tewari, Dabeen Lee,
- Abstract要約: 本稿では,無限水平平均逆線形混合マルコフ決定過程(MDPs)を学習するための計算抽出可能なアルゴリズムを提案する。
線形混合MDPのアルゴリズムは,$widetildemathcalO(dsqrtmathrmsp(v*)T)$$$T$以上の最小限の後悔上限を実現する。
- 参考スコア(独自算出の注目度): 16.49229317664822
- License:
- Abstract: This paper proposes a computationally tractable algorithm for learning infinite-horizon average-reward linear mixture Markov decision processes (MDPs) under the Bellman optimality condition. Our algorithm for linear mixture MDPs achieves a nearly minimax optimal regret upper bound of $\widetilde{\mathcal{O}}(d\sqrt{\mathrm{sp}(v^*)T})$ over $T$ time steps where $\mathrm{sp}(v^*)$ is the span of the optimal bias function $v^*$ and $d$ is the dimension of the feature mapping. Our algorithm applies the recently developed technique of running value iteration on a discounted-reward MDP approximation with clipping by the span. We prove that the value iteration procedure, even with the clipping operation, converges. Moreover, we show that the associated variance term due to random transitions can be bounded even under clipping. Combined with the weighted ridge regression-based parameter estimation scheme, this leads to the nearly minimax optimal regret guarantee.
- Abstract(参考訳): 本稿では,ベルマン最適条件下で,無限水平平均逆線形混合マルコフ決定過程(MDP)を学習するための計算処理可能なアルゴリズムを提案する。
線形混合 MDP に対する我々のアルゴリズムは、最小限の最小限の補正上限である $\widetilde{\mathcal{O}}(d\sqrt{\mathrm{sp}(v^*)T})$ over $T$ time steps where $\mathrm{sp}(v^*)$ is the span of the optimal bias function $v^*$ and $d$ is the dimension of the feature mapping。
提案アルゴリズムは,最近開発された値反復法を,スパンによるクリッピングによる縮小回帰MDP近似に適用する。
クリッピング操作であっても,値反復手順が収束することが証明された。
さらに, クリッピング下においても, ランダムな遷移に伴う分散項の有界化が可能であることを示す。
重み付きリッジ回帰に基づくパラメータ推定スキームと組み合わせることで、ほぼ最小限の後悔の保証が得られる。
関連論文リスト
- Provably Efficient Infinite-Horizon Average-Reward Reinforcement Learning with Linear Function Approximation [1.8416014644193066]
ベルマン最適条件下で線形マルコフ決定過程(MDP)と線形混合MDPを学習するアルゴリズムを提案する。
線形MDPに対する我々のアルゴリズムは、$widetildemathcalO(d3/2mathrmsp(v*)sqrtT)$ over $T$タイムステップの最もよく知られた後悔の上限を達成する。
線形混合 MDP に対して、我々のアルゴリズムは、$widetildemathcalO(dcdotmathrm) の後悔境界に達する。
論文 参考訳(メタデータ) (2024-09-16T23:13:42Z) - Reinforcement Learning for Infinite-Horizon Average-Reward Linear MDPs via Approximation by Discounted-Reward MDPs [16.49229317664822]
線形MDPを用いた無限水平平均逆強化学習について検討する。
本稿では,$widetildeO(sqrtT)$の後悔境界が,計算効率のよいアルゴリズムを実現することを提案する。
論文 参考訳(メタデータ) (2024-05-23T20:58:33Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
本稿では,円滑なベルマン作用素を持つ連続空間マルコフ決定過程(MDP)の一般クラスにおいて,$varepsilon$-optimal Policyを学習する問題を考察する。
我々のソリューションの鍵となるのは、調和解析のアイデアに基づく新しい射影技術である。
我々の結果は、連続空間 MDP における2つの人気と矛盾する視点のギャップを埋めるものである。
論文 参考訳(メタデータ) (2024-05-10T09:58:47Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
線形混合遷移カーネルを用いた最短経路(SSP)問題について検討する。
エージェントは繰り返し環境と対話し、累積コストを最小化しながら特定の目標状態に到達する。
既存の作業は、イテレーションコスト関数の厳密な下限や、最適ポリシーに対する期待長の上限を仮定することが多い。
論文 参考訳(メタデータ) (2024-02-14T07:52:00Z) - Nearly Minimax Optimal Reinforcement Learning for Linear Markov Decision
Processes [80.89852729380425]
そこで本研究では,最小限の最小残差である$tilde O(dsqrtH3K)$を計算効率よく実現したアルゴリズムを提案する。
我々の研究は線形 MDP を用いた最適 RL に対する完全な答えを提供する。
論文 参考訳(メタデータ) (2022-12-12T18:58:59Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
縮退した線形マルコフ+デルタ決定における最適同定問題について, 生成モデルに基づく固定信頼度設定における検討を行った。
複雑な非最適化プログラムの解としての下位境界は、そのようなアルゴリズムを考案する出発点として用いられる。
論文 参考訳(メタデータ) (2022-08-11T04:12:50Z) - Nearly Optimal Regret for Learning Adversarial MDPs with Linear Function
Approximation [92.3161051419884]
我々は、敵対的な報酬と完全な情報フィードバックで有限正方体エピソディックマルコフ決定プロセスのための強化学習を研究します。
我々は、$tildeO(dHsqrtT)$ regretを達成できることを示し、$H$はエピソードの長さである。
また、対数因子までの$tildeOmega(dHsqrtT)$の値が一致することを証明する。
論文 参考訳(メタデータ) (2021-02-17T18:54:08Z) - Learning Infinite-horizon Average-reward MDPs with Linear Function
Approximation [44.374427255708135]
線形関数近似を用いた無限水平平均逆設定でマルコフ決定過程を学習するための新しいアルゴリズムを開発した。
まず,最適$widetildeO(sqrtT)$ regretの計算非効率アルゴリズムを提案する。
次に,逆線形包帯から着想を得て,$widetildeO(sqrtT)$ regretのアルゴリズムを新たに開発した。
論文 参考訳(メタデータ) (2020-07-23T08:23:44Z) - Provably Efficient Reinforcement Learning for Discounted MDPs with
Feature Mapping [99.59319332864129]
本稿では,割引決定(MDP)のための強化学習について検討する。
本稿では,特徴写像を利用した新しいアルゴリズムを提案し,$tilde O(dsqrtT/ (1-gamma)2)$ regretを求める。
以上の結果から,提案した強化学習アルゴリズムは,最大1-γ-0.5$の係数でほぼ最適であることが示唆された。
論文 参考訳(メタデータ) (2020-06-23T17:08:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。