A Novel Reinforcement Learning Model for Post-Incident Malware Investigations
- URL: http://arxiv.org/abs/2410.15028v2
- Date: Tue, 22 Oct 2024 14:55:54 GMT
- Title: A Novel Reinforcement Learning Model for Post-Incident Malware Investigations
- Authors: Dipo Dunsin, Mohamed Chahine Ghanem, Karim Ouazzane, Vassil Vassilev,
- Abstract summary: This Research proposes a Novel Reinforcement Learning model to optimise malware forensics investigation during cyber incident response.
It aims to improve forensic investigation efficiency by reducing false negatives and adapting current practices to evolving malware signatures.
- Score: 0.0
- License:
- Abstract: This Research proposes a Novel Reinforcement Learning (RL) model to optimise malware forensics investigation during cyber incident response. It aims to improve forensic investigation efficiency by reducing false negatives and adapting current practices to evolving malware signatures. The proposed RL framework leverages techniques such as Q-learning and the Markov Decision Process (MDP) to train the system to identify malware patterns in live memory dumps, thereby automating forensic tasks. The RL model is based on a detailed malware workflow diagram that guides the analysis of malware artefacts using static and behavioural techniques as well as machine learning algorithms. Furthermore, it seeks to address challenges in the UK justice system by ensuring the accuracy of forensic evidence. We conduct testing and evaluation in controlled environments, using datasets created with Windows operating systems to simulate malware infections. The experimental results demonstrate that RL improves malware detection rates compared to conventional methods, with the RL model's performance varying depending on the complexity and learning rate of the environment. The study concludes that while RL offers promising potential for automating malware forensics, its efficacy across diverse malware types requires ongoing refinement of reward systems and feature extraction methods.
Related papers
- Reinforcement Learning for an Efficient and Effective Malware Investigation during Cyber Incident Response [0.0]
This research focused on enhancing post-incident malware forensic investigation using reinforcement learning RL.
We proposed an advanced MDP post incident malware forensics investigation model and framework to expedite post incident forensics.
We then implement our RL Malware Investigation Model based on structured MDP within the proposed framework.
arXiv Detail & Related papers (2024-08-04T11:55:24Z) - Leveraging LSTM and GAN for Modern Malware Detection [0.4799822253865054]
This paper proposes the utilization of the Deep Learning Model, LSTM networks, and GAN classifiers to amplify malware detection accuracy and speed.
The research outcomes come out with 98% accuracy that shows the efficiency of deep learning plays a decisive role in proactive cybersecurity defense.
arXiv Detail & Related papers (2024-05-07T14:57:24Z) - Comprehensive evaluation of Mal-API-2019 dataset by machine learning in malware detection [0.5475886285082937]
This study conducts a thorough examination of malware detection using machine learning techniques.
The aim is to advance cybersecurity capabilities by identifying and mitigating threats more effectively.
arXiv Detail & Related papers (2024-03-04T17:22:43Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - On the Effectiveness of Adversarial Samples against Ensemble
Learning-based Windows PE Malware Detectors [0.0]
We propose a mutation system to counteract ensemble learning-based detectors by combining GANs and an RL model.
In the FeaGAN model, ensemble learning is utilized to enhance the malware detector's evasion ability, with the generated adversarial patterns.
arXiv Detail & Related papers (2023-09-25T02:57:27Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Towards a Fair Comparison and Realistic Design and Evaluation Framework
of Android Malware Detectors [63.75363908696257]
We analyze 10 influential research works on Android malware detection using a common evaluation framework.
We identify five factors that, if not taken into account when creating datasets and designing detectors, significantly affect the trained ML models.
We conclude that the studied ML-based detectors have been evaluated optimistically, which justifies the good published results.
arXiv Detail & Related papers (2022-05-25T08:28:08Z) - Deep Image: A precious image based deep learning method for online
malware detection in IoT Environment [12.558284943901613]
In this paper, a different view of malware analysis is considered and the risk level of each sample feature is computed.
In addition to the usual machine learning criteria namely accuracy and FPR, a proposed criterion based on the risk of samples has also been used for comparison.
The results show that the deep learning approach performed better in detecting malware.
arXiv Detail & Related papers (2022-04-04T17:56:55Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.