Leveraging LSTM and GAN for Modern Malware Detection
- URL: http://arxiv.org/abs/2405.04373v1
- Date: Tue, 7 May 2024 14:57:24 GMT
- Title: Leveraging LSTM and GAN for Modern Malware Detection
- Authors: Ishita Gupta, Sneha Kumari, Priya Jha, Mohona Ghosh,
- Abstract summary: This paper proposes the utilization of the Deep Learning Model, LSTM networks, and GAN classifiers to amplify malware detection accuracy and speed.
The research outcomes come out with 98% accuracy that shows the efficiency of deep learning plays a decisive role in proactive cybersecurity defense.
- Score: 0.4799822253865054
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The malware booming is a cyberspace equal to the effect of climate change to ecosystems in terms of danger. In the case of significant investments in cybersecurity technologies and staff training, the global community has become locked up in the eternal war with cyber security threats. The multi-form and changing faces of malware are continuously pushing the boundaries of the cybersecurity practitioners employ various approaches like detection and mitigate in coping with this issue. Some old mannerisms like signature-based detection and behavioral analysis are slow to adapt to the speedy evolution of malware types. Consequently, this paper proposes the utilization of the Deep Learning Model, LSTM networks, and GANs to amplify malware detection accuracy and speed. A fast-growing, state-of-the-art technology that leverages raw bytestream-based data and deep learning architectures, the AI technology provides better accuracy and performance than the traditional methods. Integration of LSTM and GAN model is the technique that is used for the synthetic generation of data, leading to the expansion of the training datasets, and as a result, the detection accuracy is improved. The paper uses the VirusShare dataset which has more than one million unique samples of the malware as the training and evaluation set for the presented models. Through thorough data preparation including tokenization, augmentation, as well as model training, the LSTM and GAN models convey the better performance in the tasks compared to straight classifiers. The research outcomes come out with 98% accuracy that shows the efficiency of deep learning plays a decisive role in proactive cybersecurity defense. Aside from that, the paper studies the output of ensemble learning and model fusion methods as a way to reduce biases and lift model complexity.
Related papers
- A Sysmon Incremental Learning System for Ransomware Analysis and Detection [1.495391051525033]
In the face of increasing cyber threats, particularly ransomware attacks, there is a pressing need for advanced detection and analysis systems.
Most of these proposals leverage non-incremental learning approaches that require the underlying models to be updated from scratch to detect new ransomware.
This approach is problematic because it leaves sensitive data vulnerable to attack during retraining, as newly emerging ransomware strains may go undetected until the model is updated.
We present the Sysmon Incremental Learning System for Analysis and Detection (SILRAD), which enables continuous updates to the underlying model and effectively closes the training gap.
arXiv Detail & Related papers (2025-01-02T06:22:58Z) - A Novel Approach to Malicious Code Detection Using CNN-BiLSTM and Feature Fusion [2.3039261241391586]
This study employs the minhash algorithm to convert binary files of malware into grayscale images.
The study utilizes IDA Pro to decompile and extract opcode sequences, applying N-gram and tf-idf algorithms for feature vectorization.
A CNN-BiLSTM fusion model is designed to simultaneously process image features and opcode sequences, enhancing classification performance.
arXiv Detail & Related papers (2024-10-12T07:10:44Z) - CAMH: Advancing Model Hijacking Attack in Machine Learning [44.58778557522968]
Category-Agnostic Model Hijacking (CAMH) is a novel model hijacking attack method.
It addresses the challenges of class number mismatch, data distribution divergence, and performance balance between the original and hijacking tasks.
We demonstrate its potent attack effectiveness while ensuring minimal degradation in the performance of the original task.
arXiv Detail & Related papers (2024-08-25T07:03:01Z) - Extending Network Intrusion Detection with Enhanced Particle Swarm Optimization Techniques [0.0]
The present research investigates how to improve Network Intrusion Detection Systems (NIDS) by combining Machine Learning (ML) and Deep Learning (DL) techniques.
The study uses the CSE-CIC-IDS 2018 and LITNET-2020 datasets to compare ML methods (Decision Trees, Random Forest, XGBoost) and DL models (CNNs, RNNs, DNNs) against key performance metrics.
The Decision Tree model performed better across all measures after being fine-tuned with Enhanced Particle Swarm Optimization (EPSO), demonstrating the model's ability to detect network breaches effectively.
arXiv Detail & Related papers (2024-08-14T17:11:36Z) - Enhancing Network Intrusion Detection Performance using Generative Adversarial Networks [0.25163931116642785]
We propose a novel approach for enhancing the performance of an NIDS through the integration of Generative Adversarial Networks (GANs)
GANs generate synthetic network traffic data that closely mimics real-world network behavior.
Our findings show that the integration of GANs into NIDS can lead to enhancements in intrusion detection performance for attacks with limited training data.
arXiv Detail & Related papers (2024-04-11T04:01:15Z) - Grid Monitoring with Synchro-Waveform and AI Foundation Model Technologies [41.994460245857404]
This article advocates for the development of a next-generation grid monitoring and control system designed for future grids dominated by inverter-based resources.
We develop a physics-based AI foundation model with high-resolution synchro-waveform measurement technology to enhance grid resilience and reduce economic losses from outages.
arXiv Detail & Related papers (2024-03-11T17:28:46Z) - Comprehensive evaluation of Mal-API-2019 dataset by machine learning in malware detection [0.5475886285082937]
This study conducts a thorough examination of malware detection using machine learning techniques.
The aim is to advance cybersecurity capabilities by identifying and mitigating threats more effectively.
arXiv Detail & Related papers (2024-03-04T17:22:43Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.