論文の概要: LLaVA-Ultra: Large Chinese Language and Vision Assistant for Ultrasound
- arxiv url: http://arxiv.org/abs/2410.15074v1
- Date: Sat, 19 Oct 2024 11:38:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:20:38.606051
- Title: LLaVA-Ultra: Large Chinese Language and Vision Assistant for Ultrasound
- Title(参考訳): LLaVA-Ultra:大中国語と超音波のための視覚アシスタント
- Authors: Xuechen Guo, Wenhao Chai, Shi-Yan Li, Gaoang Wang,
- Abstract要約: パラメータ効率の調整による中国の医用視覚会話のための微粒化適応型VLMアーキテクチャを提案する。
具体的には、微妙な医用視覚意味論の強化を実現するために、微細な視覚エンコーダを備えた融合モジュールを考案する。
実施にあたっては,病院から得られた大規模マルチモーダル中国語超音波データセットを利用する。
- 参考スコア(独自算出の注目度): 7.941670191244354
- License:
- Abstract: Multimodal Large Language Model (MLLM) has recently garnered attention as a prominent research focus. By harnessing powerful LLM, it facilitates a transition of conversational generative AI from unimodal text to performing multimodal tasks. This boom begins to significantly impact medical field. However, general visual language model (VLM) lacks sophisticated comprehension for medical visual question answering (Med-VQA). Even models specifically tailored for medical domain tend to produce vague answers with weak visual relevance. In this paper, we propose a fine-grained adaptive VLM architecture for Chinese medical visual conversations through parameter-efficient tuning. Specifically, we devise a fusion module with fine-grained vision encoders to achieve enhancement for subtle medical visual semantics. Then we note data redundancy common to medical scenes is ignored in most prior works. In cases of a single text paired with multiple figures, we utilize weighted scoring with knowledge distillation to adaptively screen valid images mirroring text descriptions. For execution, we leverage a large-scale multimodal Chinese ultrasound dataset obtained from the hospital. We create instruction-following data based on text from professional doctors, which ensures effective tuning. With enhanced model and quality data, our Large Chinese Language and Vision Assistant for Ultrasound (LLaVA-Ultra) shows strong capability and robustness to medical scenarios. On three Med-VQA datasets, LLaVA-Ultra surpasses previous state-of-the-art models on various metrics.
- Abstract(参考訳): MLLM(Multimodal Large Language Model)は近年,注目すべき研究対象として注目されている。
強力なLLMを利用することで、会話生成AIを非モーダルテキストからマルチモーダルタスクへ移行させる。
このブームは医療分野に大きな影響を与え始めます。
しかしながら、一般的な視覚言語モデル(VLM)は、医学的視覚的質問応答(Med-VQA)の洗練された理解に欠ける。
医学領域に特化されたモデルでさえ、視覚的関連性の弱い曖昧な答えを生み出す傾向がある。
本稿では,中国の医用視覚対話のためのパラメータ効率調整による微粒化適応型VLMアーキテクチャを提案する。
具体的には、微妙な医用視覚意味論の強化を実現するために、微細な視覚エンコーダを備えた融合モジュールを考案する。
そして、医療現場に共通するデータの冗長性は、ほとんどの先行研究で無視されていることに留意する。
複数の図形と組み合わせた単一のテキストの場合、知識蒸留による重み付けスコアを用いて、テキスト記述を反映した有効な画像の適応表示を行う。
実施にあたっては,病院から得られた大規模マルチモーダル中国語超音波データセットを利用する。
我々は,専門医のテキストに基づく指導追従データを作成し,効果的なチューニングを実現する。
拡張されたモデルと品質データにより、我々の大中国語と超音波用視覚アシスタント(LLaVA-Ultra)は、医療シナリオに対して強力な能力と堅牢性を示す。
3つのMed-VQAデータセットでは、LLaVA-Ultraが、さまざまなメトリクスに関する過去の最先端モデルを上回っている。
関連論文リスト
- Parameter-Efficient Fine-Tuning Medical Multimodal Large Language Models for Medical Visual Grounding [9.144030136201476]
マルチモーダル大言語モデル(MLLM)は、LLMの優れたテキスト理解能力を継承し、これらの機能をマルチモーダルシナリオに拡張する。
これらのモデルは、マルチモーダルタスクの一般領域において優れた結果をもたらす。
しかし,医療分野では,医療用MLLMの開発に多大なトレーニングコストと広範な医療データを必要とすることが課題となっている。
論文 参考訳(メタデータ) (2024-10-31T11:07:26Z) - LoGra-Med: Long Context Multi-Graph Alignment for Medical Vision-Language Model [55.80651780294357]
最新の医療用マルチモーダル大規模言語モデル(med-MLLM)は、事前訓練において命令追従データを活用する。
LoGra-Medは新しいマルチグラフアライメントアルゴリズムで、画像のモダリティ、会話ベースの記述、拡張キャプション間でのトリプルト相関を強制する。
以上の結果から,LoGra-Medは医療用VQAの600K画像テキスト対に対してLAVA-Medと一致し,その10%でトレーニングした場合に有意に優れていた。
論文 参考訳(メタデータ) (2024-10-03T15:52:03Z) - ZALM3: Zero-Shot Enhancement of Vision-Language Alignment via In-Context Information in Multi-Turn Multimodal Medical Dialogue [25.398370966763597]
オンライン医療相談のシナリオでは、医師は患者が複数のラウンドで提供したテキストや画像に反応し、健康状態の診断を行う。
従来の医療用視覚質問応答 (Med-VQA) において, 専門機器が取得した高品質な画像とは違って, 症例内の画像は患者の携帯電話で撮影される。
マルチターンマルチモーダル医療対話における視覚言語アライメントを改善するゼロショット戦略であるZALM3を提案する。
論文 参考訳(メタデータ) (2024-09-26T07:55:57Z) - STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical Question-Answering [58.79671189792399]
STLLaVA-Medは、医療ビジュアルインストラクションデータを自動生成できるポリシーモデルを訓練するために設計されている。
STLLaVA-Medの有効性とデータ効率を3つの主要な医用視覚質問応答(VQA)ベンチマークで検証した。
論文 参考訳(メタデータ) (2024-06-28T15:01:23Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
本稿では,PubMedなどの公共リソースから,医用画像・テキスト・アライメントデータを自動的に収集する方法を示す。
特に,まず大きな脳画像テキストデータセットを収集することにより,事前学習プロセスの合理化を図るパイプラインを提案する。
また,医療領域におけるサブフィギュアをサブキャプションにマッピングするというユニークな課題についても検討した。
論文 参考訳(メタデータ) (2024-04-27T05:03:42Z) - MISS: A Generative Pretraining and Finetuning Approach for Med-VQA [16.978523518972533]
本稿では,医療用VQAタスクのためのMultI-task Self-Supervised Learning based framework (MISS)を提案する。
我々は,テキストエンコーダとマルチモーダルエンコーダを統一し,マルチタスク学習を通じて画像テキスト機能を調整する。
提案手法は,より少ないマルチモーダルデータセットで優れた結果を得るとともに,生成VQAモデルの利点を実証する。
論文 参考訳(メタデータ) (2024-01-10T13:56:40Z) - Qilin-Med-VL: Towards Chinese Large Vision-Language Model for General
Healthcare [14.646414629627001]
本研究は,テキストデータと視覚データの分析を統合するために設計された,中国初の大規模視覚言語モデルであるQilin-Med-VLを紹介する。
また,100万以上の画像テキストペアからなるデータセットであるChiMed-VLもリリースしました。
論文 参考訳(メタデータ) (2023-10-27T08:05:21Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
我々は,会話型医療ビジョン言語モデルであるXrayGPTを紹介する。
胸部X線写真に関するオープンエンドの質問を分析し、答えることができる。
自由テキストラジオグラフィーレポートから217kの対話的かつ高品質な要約を生成する。
論文 参考訳(メタデータ) (2023-06-13T17:59:59Z) - LLaVA-Med: Training a Large Language-and-Vision Assistant for
Biomedicine in One Day [85.19963303642427]
本稿では,バイオメディカルイメージのオープンな研究課題に答えられる視覚言語対話アシスタントを訓練するための費用効率のよいアプローチを提案する。
モデルはまず、フィギュア・キャプションのペアを使ってバイオメディカル・ボキャブラリをアライメントし、その後、オープンエンドの会話意味論を習得する。
これにより、バイオメディジンのための大規模言語と視覚アシスタントを15時間以内で(8つのA100で)訓練することができる。
論文 参考訳(メタデータ) (2023-06-01T16:50:07Z) - Multi-Modal Masked Autoencoders for Medical Vision-and-Language
Pre-Training [62.215025958347105]
マルチモーダルマスク付きオートエンコーダを用いた自己教師型学習パラダイムを提案する。
我々は、ランダムにマスキングされた画像やテキストから欠落したピクセルやトークンを再構成することで、クロスモーダルなドメイン知識を学習する。
論文 参考訳(メタデータ) (2022-09-15T07:26:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。