論文の概要: Parameter-Efficient Fine-Tuning Medical Multimodal Large Language Models for Medical Visual Grounding
- arxiv url: http://arxiv.org/abs/2410.23822v1
- Date: Thu, 31 Oct 2024 11:07:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:03:08.774526
- Title: Parameter-Efficient Fine-Tuning Medical Multimodal Large Language Models for Medical Visual Grounding
- Title(参考訳): 医用視覚接地のためのパラメータ効率の良い医療用マルチモーダル大言語モデル
- Authors: Jinlong He, Pengfei Li, Gang Liu, Shenjun Zhong,
- Abstract要約: マルチモーダル大言語モデル(MLLM)は、LLMの優れたテキスト理解能力を継承し、これらの機能をマルチモーダルシナリオに拡張する。
これらのモデルは、マルチモーダルタスクの一般領域において優れた結果をもたらす。
しかし,医療分野では,医療用MLLMの開発に多大なトレーニングコストと広範な医療データを必要とすることが課題となっている。
- 参考スコア(独自算出の注目度): 9.144030136201476
- License:
- Abstract: Multimodal Large Language Models (MLLMs) inherit the superior text understanding capabilities of LLMs and extend these capabilities to multimodal scenarios. These models achieve excellent results in the general domain of multimodal tasks. However, in the medical domain, the substantial training costs and the requirement for extensive medical data pose challenges to the development of medical MLLMs. Furthermore, due to the free-text form of answers, tasks such as visual grounding that need to produce output in a prescribed form become difficult for MLLMs. So far, there have been no medical MLLMs works in medical visual grounding area. For the medical vision grounding task, which involves identifying locations in medical images based on short text descriptions, we propose Parameter-efficient Fine-tuning medical multimodal large language models for Medcial Visual Grounding (PFMVG). To validate the performance of the model, we evaluate it on a public benchmark dataset for medical visual grounding, where it achieves competitive results, and significantly outperforming GPT-4v. Our code will be open sourced after peer review.
- Abstract(参考訳): マルチモーダル大言語モデル(MLLM)は、LLMの優れたテキスト理解能力を継承し、これらの機能をマルチモーダルシナリオに拡張する。
これらのモデルは、マルチモーダルタスクの一般領域において優れた結果をもたらす。
しかし,医療分野では,医療用MLLMの開発に多大なトレーニングコストと広範な医療データを必要とすることが課題となっている。
さらに,自由文形式の回答により,所定形式の出力を生成する必要のある視覚的接地などのタスクがMLLMにとって困難になる。
これまでのところ、医療用MLLMは、医療用ビジュアルグラウンドで機能していない。
短文記述に基づく医用画像の位置の特定を伴う医用視標定タスクにおいて,PFMVG(Medcial Visual Grounding)のためのパラメータ効率の高い医療用マルチモーダル大言語モデルを提案する。
本モデルの性能を評価するため,医用ビジュアルグラウンドティングのための公開ベンチマークデータセットを用いて評価を行い,競争結果が得られ,GPT-4vを著しく上回る結果を得た。
私たちのコードはピアレビュー後にオープンソース化されます。
関連論文リスト
- Interpretable Bilingual Multimodal Large Language Model for Diverse Biomedical Tasks [13.016940516468674]
本研究の目的は,医学的MLLMの解剖学的領域全体を理解する能力を高めることである。
本稿では,最初のバイリンガル・ジェネリスト医療用AIシステムである領域認識型医療用MLLM MedRegAを提案する。
我々のモデルは、バイリンガル設定における様々な医療ビジョン言語タスクにおける強力なパフォーマンスを達成するだけでなく、マルチモーダル・メディカルスキャンにおける構造を認識し、検出することができる。
論文 参考訳(メタデータ) (2024-10-24T02:55:41Z) - LLaVA-Ultra: Large Chinese Language and Vision Assistant for Ultrasound [7.941670191244354]
パラメータ効率の調整による中国の医用視覚会話のための微粒化適応型VLMアーキテクチャを提案する。
具体的には、微妙な医用視覚意味論の強化を実現するために、微細な視覚エンコーダを備えた融合モジュールを考案する。
実施にあたっては,病院から得られた大規模マルチモーダル中国語超音波データセットを利用する。
論文 参考訳(メタデータ) (2024-10-19T11:38:31Z) - LoGra-Med: Long Context Multi-Graph Alignment for Medical Vision-Language Model [55.80651780294357]
最新の医療用マルチモーダル大規模言語モデル(med-MLLM)は、事前訓練において命令追従データを活用する。
LoGra-Medは新しいマルチグラフアライメントアルゴリズムで、画像のモダリティ、会話ベースの記述、拡張キャプション間でのトリプルト相関を強制する。
以上の結果から,LoGra-Medは医療用VQAの600K画像テキスト対に対してLAVA-Medと一致し,その10%でトレーニングした場合に有意に優れていた。
論文 参考訳(メタデータ) (2024-10-03T15:52:03Z) - STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical Question-Answering [58.79671189792399]
STLLaVA-Medは、医療ビジュアルインストラクションデータを自動生成できるポリシーモデルを訓練するために設計されている。
STLLaVA-Medの有効性とデータ効率を3つの主要な医用視覚質問応答(VQA)ベンチマークで検証した。
論文 参考訳(メタデータ) (2024-06-28T15:01:23Z) - HuatuoGPT-Vision, Towards Injecting Medical Visual Knowledge into Multimodal LLMs at Scale [29.956053068653734]
私たちは13万の医療用VQAサンプルでPubMedVisionデータセットを作成します。
PubMedVisionを用いて34Bの医療MLLM HuatuoGPT-Visionを訓練し、医療マルチモーダルシナリオにおいて優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-06-27T15:50:41Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
本稿では,PubMedなどの公共リソースから,医用画像・テキスト・アライメントデータを自動的に収集する方法を示す。
特に,まず大きな脳画像テキストデータセットを収集することにより,事前学習プロセスの合理化を図るパイプラインを提案する。
また,医療領域におけるサブフィギュアをサブキャプションにマッピングするというユニークな課題についても検討した。
論文 参考訳(メタデータ) (2024-04-27T05:03:42Z) - Med-MoE: Mixture of Domain-Specific Experts for Lightweight Medical Vision-Language Models [17.643421997037514]
差別的, 生成的両マルチモーダル医療課題に対処する新しい枠組みを提案する。
Med-MoEの学習は、マルチモーダル医療アライメント、命令チューニングとルーティング、ドメイン固有のMoEチューニングの3つのステップで構成されている。
我々のモデルは最先端のベースラインに匹敵する性能を達成できる。
論文 参考訳(メタデータ) (2024-04-16T02:35:17Z) - OmniMedVQA: A New Large-Scale Comprehensive Evaluation Benchmark for Medical LVLM [48.16696073640864]
我々は,新しい包括的ビジュアル質問回答(VQA)ベンチマークであるOmniMedVQAを紹介する。
このベンチマークのすべての画像は、本物の医療シナリオから得られたものです。
既存のLVLMはこれらの医療用VQA問題に効果的に取り組むのに苦労していることがわかった。
論文 参考訳(メタデータ) (2024-02-14T13:51:56Z) - OphGLM: Training an Ophthalmology Large Language-and-Vision Assistant
based on Instructions and Dialogue [7.140551103766788]
我々は、眼科大言語と視覚アシスタント(OphGLM)を完成させるために、大きな言語モデルに視覚能力を導入する。
実験の結果,OphGLMモデルは非常によく機能し,眼科における臨床応用に革命をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2023-06-21T11:09:48Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
我々は,会話型医療ビジョン言語モデルであるXrayGPTを紹介する。
胸部X線写真に関するオープンエンドの質問を分析し、答えることができる。
自由テキストラジオグラフィーレポートから217kの対話的かつ高品質な要約を生成する。
論文 参考訳(メタデータ) (2023-06-13T17:59:59Z) - Customizing General-Purpose Foundation Models for Medical Report
Generation [64.31265734687182]
ラベル付き医用画像-レポートペアの不足は、ディープニューラルネットワークや大規模ニューラルネットワークの開発において大きな課題となっている。
本稿では,コンピュータビジョンと自然言語処理の基盤モデル (FM) として,市販の汎用大規模事前学習モデルのカスタマイズを提案する。
論文 参考訳(メタデータ) (2023-06-09T03:02:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。