論文の概要: Budgeted Online Continual Learning by Adaptive Layer Freezing and Frequency-based Sampling
- arxiv url: http://arxiv.org/abs/2410.15143v1
- Date: Sat, 19 Oct 2024 16:00:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:21:52.617728
- Title: Budgeted Online Continual Learning by Adaptive Layer Freezing and Frequency-based Sampling
- Title(参考訳): 適応層凍結と周波数に基づくサンプリングによるオンライン連続学習の予算化
- Authors: Minhyuk Seo, Hyunseo Koh, Jonghyun Choi,
- Abstract要約: 本稿では,演算およびメモリ予算の指標として,Byteにおける浮動小数点演算と総メモリサイズを提案する。
CL法を限定的な全予算で改善するために,より少ない情報バッチのために層を更新しない適応層凍結を提案する。
さらに,より少ないイテレーションでランダム検索を使用することで,モデルが同じ量の知識を学習できるメモリ検索手法を提案する。
- 参考スコア(独自算出の注目度): 19.447914903112366
- License:
- Abstract: The majority of online continual learning (CL) advocates single-epoch training and imposes restrictions on the size of replay memory. However, single-epoch training would incur a different amount of computations per CL algorithm, and the additional storage cost to store logit or model in addition to replay memory is largely ignored in calculating the storage budget. Arguing different computational and storage budgets hinder fair comparison among CL algorithms in practice, we propose to use floating point operations (FLOPs) and total memory size in Byte as a metric for computational and memory budgets, respectively, to compare and develop CL algorithms in the same 'total resource budget.' To improve a CL method in a limited total budget, we propose adaptive layer freezing that does not update the layers for less informative batches to reduce computational costs with a negligible loss of accuracy. In addition, we propose a memory retrieval method that allows the model to learn the same amount of knowledge as using random retrieval in fewer iterations. Empirical validations on the CIFAR-10/100, CLEAR-10/100, and ImageNet-1K datasets demonstrate that the proposed approach outperforms the state-of-the-art methods within the same total budget
- Abstract(参考訳): オンライン連続学習(CL)の大多数は、シングルエポックトレーニングを提唱し、リプレイメモリのサイズに制限を課している。
しかし、シングルエポックトレーニングはCLアルゴリズムごとに計算量が異なるため、メモリの再生に加えてロジットやモデルを保存するための追加のストレージコストは、ストレージ予算の計算において無視される。
計算と記憶の予算の違いがCLアルゴリズムの公正な比較に支障をきたし,計算とメモリの予算のメトリクスとしてByteの浮動小数点演算(FLOP)と総メモリサイズを用いて,CLアルゴリズムを同じ「総合資源予算」で比較・開発することを提案する。
CL法を限定的な全予算で改善するために,計算コストを削減し,精度を損なうことなく計算コストを削減できる適応層凍結法を提案する。
さらに,より少ないイテレーションでランダムに検索するのと同じ量の知識を学習できるメモリ検索手法を提案する。
CIFAR-10/100, CLEAR-10/100, ImageNet-1Kデータセットの実証検証は、提案手法が同じ予算内で最先端の手法より優れていることを示す。
関連論文リスト
- Breaking the Memory Barrier: Near Infinite Batch Size Scaling for Contrastive Loss [59.835032408496545]
本稿では, コントラスト損失計算を任意の小ブロックに分割するタイルベースの戦略を提案する。
分散システムの階層構造を活用するためのマルチレベルタイリング戦略も導入する。
SOTAメモリ効率のソリューションと比較すると、同等の速度を維持しながら、メモリの2桁の削減を実現している。
論文 参考訳(メタデータ) (2024-10-22T17:59:30Z) - An Efficient Procedure for Computing Bayesian Network Structure Learning [0.9208007322096532]
本稿では,段階的にレベル付けされたスコアリング手法に基づいて,グローバルに最適なベイズネットワーク構造探索アルゴリズムを提案する。
実験結果から,本手法はメモリのみを使用する場合,ピークメモリ使用量を削減するだけでなく,計算効率も向上することが示された。
論文 参考訳(メタデータ) (2024-07-24T07:59:18Z) - Model Tells You Where to Merge: Adaptive KV Cache Merging for LLMs on Long-Context Tasks [21.815661269986425]
KVMergerと呼ばれる新しいKVキャッシュマージ手法を提案し、長文タスクに対して適応的なKVキャッシュ圧縮を実現する。
我々のアプローチは、キー状態が1つのシーケンス内のトークンレベルで高い類似性を示すという興味深い観察にインスパイアされている。
我々は,制約メモリ予算下での長時間コンテキストタスクに対するKVMergerの有効性を示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2024-07-11T12:50:42Z) - Continual Learning on a Diet: Learning from Sparsely Labeled Streams Under Constrained Computation [123.4883806344334]
本研究では,学習アルゴリズムが学習段階ごとに制限された計算予算を付与する,現実的な連続学習環境について検討する。
この設定を,スパースラベル率の高い大規模半教師付き連続学習シナリオに適用する。
広範に分析と改善を行った結果,DietCLはラベル空間,計算予算,その他様々な改善の完全な範囲で安定していることがわかった。
論文 参考訳(メタデータ) (2024-04-19T10:10:39Z) - Online Continual Learning Without the Storage Constraint [67.66235695269839]
我々は、kNN分類器を固定された事前訓練された特徴抽出器とともに継続的に更新する簡単なアルゴリズムを提案する。
高速に変化するストリームに適応し、安定性のギャップをゼロにし、小さな計算予算内で動作し、機能のみを格納することで、ストレージ要件を低くすることができる。
2つの大規模オンライン連続学習データセットにおいて、既存の手法を20%以上の精度で上回ることができる。
論文 参考訳(メタデータ) (2023-05-16T08:03:07Z) - Computationally Budgeted Continual Learning: What Does Matter? [128.0827987414154]
CL (Continuous Learning) は、新しいデータに適応しながら、以前の知識を保存し、分布の異なる入力データのストリーム上でモデルを逐次訓練することを目的としている。
現在のCL文献では、以前のデータへのアクセス制限に焦点が当てられているが、トレーニングの計算予算に制約は課されていない。
本稿では,この問題を大規模ベンチマークで再検討し,計算制約条件下での従来のCL手法の性能解析を行う。
論文 参考訳(メタデータ) (2023-03-20T14:50:27Z) - Improving information retention in large scale online continual learning [99.73847522194549]
オンライン連続学習は、既存の知識を維持しながら、新しいデータに効率的に適応することを目的としている。
最近の研究は、リプレイバッファが無制限であっても、大規模なOCLでは情報保持が問題であり続けていることを示唆している。
非定常目標に対する最適化を改善するため,移動平均の手法群を提案する。
論文 参考訳(メタデータ) (2022-10-12T16:59:43Z) - SreaMRAK a Streaming Multi-Resolution Adaptive Kernel Algorithm [60.61943386819384]
既存のKRRの実装では、すべてのデータがメインメモリに格納される必要がある。
KRRのストリーミング版であるStreaMRAKを提案する。
本稿では,2つの合成問題と2重振り子の軌道予測について紹介する。
論文 参考訳(メタデータ) (2021-08-23T21:03:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。