論文の概要: A survey of neural-network-based methods utilising comparable data for finding translation equivalents
- arxiv url: http://arxiv.org/abs/2410.15144v1
- Date: Sat, 19 Oct 2024 16:10:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:19:01.972696
- Title: A survey of neural-network-based methods utilising comparable data for finding translation equivalents
- Title(参考訳): 翻訳等価点探索に匹敵するデータを利用したニューラル・ネットワーク・ベースの手法の検討
- Authors: Michaela Denisová, Pavel Rychlý,
- Abstract要約: NLPの最も一般的なアプローチとして,必要な辞書コンポーネントの1つを自動生成する手法を提案する。
記述法の改善に欠かせないので,レキソグラフィの観点から解析する。
この調査は、NLPフィールドがレキシコグラフィーの洞察の恩恵を受けることができるため、NLPフィールドとレキシコグラフィーフィールドの接続を奨励する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The importance of inducing bilingual dictionary components in many natural language processing (NLP) applications is indisputable. However, the dictionary compilation process requires extensive work and combines two disciplines, NLP and lexicography, while the former often omits the latter. In this paper, we present the most common approaches from NLP that endeavour to automatically induce one of the essential dictionary components, translation equivalents and focus on the neural-network-based methods using comparable data. We analyse them from a lexicographic perspective since their viewpoints are crucial for improving the described methods. Moreover, we identify the methods that integrate these viewpoints and can be further exploited in various applications that require them. This survey encourages a connection between the NLP and lexicography fields as the NLP field can benefit from lexicographic insights, and it serves as a helping and inspiring material for further research in the context of neural-network-based methods utilising comparable data.
- Abstract(参考訳): 多くの自然言語処理(NLP)アプリケーションでバイリンガル辞書コンポーネントを誘導することの重要性は疑わしい。
しかし、辞書コンパイルプロセスは広範な作業を必要とし、NLPとレキシコグラフィーという2つの分野を組み合わせ、前者は後者を省略することが多い。
本稿では,NLPからの最も一般的なアプローチについて述べる。この手法は,重要な辞書コンポーネントの1つ,翻訳の等価部分を自動生成し,同等のデータを用いたニューラル・ネットワーク・ベースの手法に焦点をあてる。
記述法の改善に欠かせないので,レキソグラフィの観点から解析する。
さらに、これらの視点を統合する手法を特定し、それらを必要とする様々なアプリケーションでさらに活用することができる。
この調査は、NLPフィールドがレキソグラフィの洞察から恩恵を受けることができるため、NLPフィールドとレキソグラフィーフィールドの接続を奨励し、同等のデータを利用するニューラルネットワークベースの手法の文脈において、さらなる研究のための支援および刺激材料として機能する。
関連論文リスト
- Towards Systematic Monolingual NLP Surveys: GenA of Greek NLP [2.3499129784547663]
本研究は, 体系的かつ総合的な単言語NLPサーベイを作成する手法を導入することで, ギャップを埋めるものである。
構造化された検索プロトコルによって特徴づけられ、出版物を選定し、NLPタスクの分類によってそれらを整理することができる。
本手法の適用により,2012年から2022年にかけて,ギリシャNLPの体系的文献レビューを行った。
論文 参考訳(メタデータ) (2024-07-13T12:01:52Z) - A Novel Cartography-Based Curriculum Learning Method Applied on RoNLI: The First Romanian Natural Language Inference Corpus [71.77214818319054]
自然言語推論は自然言語理解のプロキシである。
ルーマニア語のNLIコーパスは公開されていない。
58Kの訓練文対からなるルーマニア初のNLIコーパス(RoNLI)を紹介する。
論文 参考訳(メタデータ) (2024-05-20T08:41:15Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットに対するNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - Surveying the Landscape of Text Summarization with Deep Learning: A
Comprehensive Review [2.4185510826808487]
ディープラーニングは、言語データの複雑な表現を学習できるモデルの開発を可能にすることによって、自然言語処理(NLP)に革命をもたらした。
NLPのディープラーニングモデルは、通常、大量のデータを使用してディープニューラルネットワークをトレーニングし、言語データ内のパターンと関係を学習する。
テキスト要約にディープラーニングを適用することは、テキスト要約タスクを実行するためにディープニューラルネットワークを使用することを指す。
論文 参考訳(メタデータ) (2023-10-13T21:24:37Z) - An Inclusive Notion of Text [69.36678873492373]
テキストの概念の明確さは再現可能で一般化可能なNLPにとって不可欠である,と我々は主張する。
言語的および非言語的要素の2層分類を導入し,NLPモデリングに使用することができる。
論文 参考訳(メタデータ) (2022-11-10T14:26:43Z) - Meta Learning for Natural Language Processing: A Survey [88.58260839196019]
ディープラーニングは自然言語処理(NLP)分野において主要な技術である。
ディープラーニングには多くのラベル付きデータが必要です。
メタ学習は、より良いアルゴリズムを学ぶためのアプローチを研究する機械学習の分野である。
論文 参考訳(メタデータ) (2022-05-03T13:58:38Z) - Utilizing Wordnets for Cognate Detection among Indian Languages [50.83320088758705]
ヒンディー語と10のインド諸語間の単語対を検出する。
深層学習手法を用いて単語対が共生か否かを予測する。
性能は最大26%向上した。
論文 参考訳(メタデータ) (2021-12-30T16:46:28Z) - FedNLP: A Research Platform for Federated Learning in Natural Language
Processing [55.01246123092445]
NLPのフェデレーションラーニングのための研究プラットフォームであるFedNLPを紹介します。
FedNLPは、テキスト分類、シーケンスタグ付け、質問応答、Seq2seq生成、言語モデリングなど、NLPで一般的なタスクの定式化をサポートしている。
FedNLPによる予備実験では、分散型データセットと集中型データセットの学習には大きなパフォーマンスギャップが存在することが明らかになった。
論文 参考訳(メタデータ) (2021-04-18T11:04:49Z) - Natural Language Processing Advancements By Deep Learning: A Survey [0.755972004983746]
この調査は、ディープラーニングの恩恵を受けたNLPのさまざまな側面と応用を分類し、対処する。
コアNLPタスクとアプリケーションをカバーするもので、深層学習手法とモデルがどのようにこれらの領域を前進させるかを記述している。
論文 参考訳(メタデータ) (2020-03-02T21:32:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。