Explaining Graph Neural Networks with Large Language Models: A Counterfactual Perspective for Molecular Property Prediction
- URL: http://arxiv.org/abs/2410.15165v1
- Date: Sat, 19 Oct 2024 17:34:36 GMT
- Title: Explaining Graph Neural Networks with Large Language Models: A Counterfactual Perspective for Molecular Property Prediction
- Authors: Yinhan He, Zaiyi Zheng, Patrick Soga, Yaozhen Zhu, yushun Dong, Jundong Li,
- Abstract summary: Graph Counterfactual Explanation (GCE) has emerged as a promising approach to improve GNN transparency.
We propose a novel GCE method, LLM-GCE, to unleash the power of large language models (LLMs) in explaining GNNs for molecular property prediction.
- Score: 41.39277277686706
- License:
- Abstract: In recent years, Graph Neural Networks (GNNs) have become successful in molecular property prediction tasks such as toxicity analysis. However, due to the black-box nature of GNNs, their outputs can be concerning in high-stakes decision-making scenarios, e.g., drug discovery. Facing such an issue, Graph Counterfactual Explanation (GCE) has emerged as a promising approach to improve GNN transparency. However, current GCE methods usually fail to take domain-specific knowledge into consideration, which can result in outputs that are not easily comprehensible by humans. To address this challenge, we propose a novel GCE method, LLM-GCE, to unleash the power of large language models (LLMs) in explaining GNNs for molecular property prediction. Specifically, we utilize an autoencoder to generate the counterfactual graph topology from a set of counterfactual text pairs (CTPs) based on an input graph. Meanwhile, we also incorporate a CTP dynamic feedback module to mitigate LLM hallucination, which provides intermediate feedback derived from the generated counterfactuals as an attempt to give more faithful guidance. Extensive experiments demonstrate the superior performance of LLM-GCE. Our code is released on https://github.com/YinhanHe123/new\_LLM4GNNExplanation.
Related papers
- Global Graph Counterfactual Explanation: A Subgraph Mapping Approach [54.42907350881448]
Graph Neural Networks (GNNs) have been widely deployed in various real-world applications.
Counterfactual explanation aims to find minimum perturbations on input graphs that change the GNN predictions.
We propose GlobalGCE, a novel global-level graph counterfactual explanation method.
arXiv Detail & Related papers (2024-10-25T21:39:05Z) - Spatio-Spectral Graph Neural Networks [50.277959544420455]
We propose Spatio-Spectral Graph Networks (S$2$GNNs)
S$2$GNNs combine spatially and spectrally parametrized graph filters.
We show that S$2$GNNs vanquish over-squashing and yield strictly tighter approximation-theoretic error bounds than MPGNNs.
arXiv Detail & Related papers (2024-05-29T14:28:08Z) - How Graph Neural Networks Learn: Lessons from Training Dynamics [80.41778059014393]
We study the training dynamics in function space of graph neural networks (GNNs)
We find that the gradient descent optimization of GNNs implicitly leverages the graph structure to update the learned function.
This finding offers new interpretable insights into when and why the learned GNN functions generalize.
arXiv Detail & Related papers (2023-10-08T10:19:56Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Global Counterfactual Explainer for Graph Neural Networks [8.243944711755617]
Graph neural networks (GNNs) find applications in various domains such as computational biology, natural language processing, and computer security.
There is an increasing need to explain GNN predictions since GNNs are black-box machine learning models.
Existing methods for counterfactual explanation of GNNs are limited to instance-specific local reasoning.
arXiv Detail & Related papers (2022-10-21T02:46:35Z) - GNNInterpreter: A Probabilistic Generative Model-Level Explanation for
Graph Neural Networks [25.94529851210956]
We propose a model-agnostic model-level explanation method for different Graph Neural Networks (GNNs) that follow the message passing scheme, GNNInterpreter.
GNNInterpreter learns a probabilistic generative graph distribution that produces the most discriminative graph pattern the GNN tries to detect.
Compared to existing works, GNNInterpreter is more flexible and computationally efficient in generating explanation graphs with different types of node and edge features.
arXiv Detail & Related papers (2022-09-15T07:45:35Z) - Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks [33.20913249848369]
Graph Neural Networks (GNNs) are deep learning models that take graph data as inputs, and they are applied to various tasks such as traffic prediction and molecular property prediction.
We extend explainability methods for CNNs, such as Local Interpretable Model-Agnostic Explanations (LIME), Gradient-Based Saliency Maps, and Gradient-Weighted Class Activation Mapping (Grad-CAM) to GNNs.
The experimental results indicate that the LIME-based approach is the most efficient explainability method for multiple tasks in the real-world situation, outperforming even the state-of-the
arXiv Detail & Related papers (2021-11-01T06:27:29Z) - Higher-Order Explanations of Graph Neural Networks via Relevant Walks [3.1510406584101776]
Graph Neural Networks (GNNs) are a popular approach for predicting graph structured data.
In this paper, we show that GNNs can in fact be naturally explained using higher-order expansions.
We extract practically relevant insights on sentiment analysis of text data, structure-property relationships in quantum chemistry, and image classification.
arXiv Detail & Related papers (2020-06-05T17:59:14Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.