'Hello, World!': Making GNNs Talk with LLMs
- URL: http://arxiv.org/abs/2505.20742v1
- Date: Tue, 27 May 2025 05:32:38 GMT
- Title: 'Hello, World!': Making GNNs Talk with LLMs
- Authors: Sunwoo Kim, Soo Yong Lee, Jaemin Yoo, Kijung Shin,
- Abstract summary: Graph neural networks (GNNs) have shown remarkable performance across diverse graph-related tasks.<n>We propose Graph Lingual Network (GLN), a GNN built on large language models (LLMs) with hidden representations in the form of human-readable text.<n>GLN incorporates not only the message passing module of GNNs but also advanced GNN techniques, including graph attention and initial residual connection.
- Score: 32.2407412376075
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: While graph neural networks (GNNs) have shown remarkable performance across diverse graph-related tasks, their high-dimensional hidden representations render them black boxes. In this work, we propose Graph Lingual Network (GLN), a GNN built on large language models (LLMs), with hidden representations in the form of human-readable text. Through careful prompt design, GLN incorporates not only the message passing module of GNNs but also advanced GNN techniques, including graph attention and initial residual connection. The comprehensibility of GLN's hidden representations enables an intuitive analysis of how node representations change (1) across layers and (2) under advanced GNN techniques, shedding light on the inner workings of GNNs. Furthermore, we demonstrate that GLN achieves strong zero-shot performance on node classification and link prediction, outperforming existing LLM-based baseline methods.
Related papers
- Graph Neural Networks at a Fraction [1.8175282137722093]
This paper introduces Quaternion Message Passing Neural Networks (QMPNNs), a framework that leverages quaternion space to compute node representations.<n>We present a novel perspective on Graph Lottery Tickets, redefining their applicability within the context of GNNs and QMPNNs.
arXiv Detail & Related papers (2025-02-10T03:55:09Z) - GL-Fusion: Rethinking the Combination of Graph Neural Network and Large Language model [63.774726052837266]
We introduce a new architecture that deeply integrates Graph Neural Networks (GNNs) with Large Language Models (LLMs)<n>We introduce three key innovations: (1) Structure-Aware Transformers, which incorporate GNN's message-passing capabilities directly into LLM's transformer layers; (2) Graph-Text Cross-Attention, which processes full, uncompressed text from graph nodes and edges; and (3) GNN-LLM Twin Predictor, enabling LLM's flexible autoregressive generation alongside GNN's scalable one-pass prediction.
arXiv Detail & Related papers (2024-12-08T05:49:58Z) - Can Large Language Models Act as Ensembler for Multi-GNNs? [6.387816922598151]
Graph Neural Networks (GNNs) have emerged as powerful models for learning from graph-structured data.<n>GNNs lack the inherent semantic understanding capability of rich textual node attributes, limiting their effectiveness in applications.<n>This research advances text-attributed graph ensemble learning by providing a robust and superior solution for integrating semantic and structural information.
arXiv Detail & Related papers (2024-10-22T08:48:52Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - LOGIN: A Large Language Model Consulted Graph Neural Network Training Framework [30.54068909225463]
We aim to streamline the GNN design process and leverage the advantages of Large Language Models (LLMs) to improve the performance of GNNs on downstream tasks.
We formulate a new paradigm, coined "LLMs-as-Consultants," which integrates LLMs with GNNs in an interactive manner.
We empirically evaluate the effectiveness of LOGIN on node classification tasks across both homophilic and heterophilic graphs.
arXiv Detail & Related papers (2024-05-22T18:17:20Z) - Graph Neural Networks are Inherently Good Generalizers: Insights by
Bridging GNNs and MLPs [71.93227401463199]
This paper pinpoints the major source of GNNs' performance gain to their intrinsic capability, by introducing an intermediate model class dubbed as P(ropagational)MLP.
We observe that PMLPs consistently perform on par with (or even exceed) their GNN counterparts, while being much more efficient in training.
arXiv Detail & Related papers (2022-12-18T08:17:32Z) - AdaGNN: A multi-modal latent representation meta-learner for GNNs based
on AdaBoosting [0.38073142980733]
Graph Neural Networks (GNNs) focus on extracting intrinsic network features.
We propose boosting-based meta learner for GNNs.
AdaGNN performs exceptionally well for applications with rich and diverse node neighborhood information.
arXiv Detail & Related papers (2021-08-14T03:07:26Z) - Identity-aware Graph Neural Networks [63.6952975763946]
We develop a class of message passing Graph Neural Networks (ID-GNNs) with greater expressive power than the 1-WL test.
ID-GNN extends existing GNN architectures by inductively considering nodes' identities during message passing.
We show that transforming existing GNNs to ID-GNNs yields on average 40% accuracy improvement on challenging node, edge, and graph property prediction tasks.
arXiv Detail & Related papers (2021-01-25T18:59:01Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.