論文の概要: HACSurv: A Hierarchical Copula-based Approach for Survival Analysis with Dependent Competing Risks
- arxiv url: http://arxiv.org/abs/2410.15180v1
- Date: Sat, 19 Oct 2024 18:52:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:19:50.600819
- Title: HACSurv: A Hierarchical Copula-based Approach for Survival Analysis with Dependent Competing Risks
- Title(参考訳): HACSurv:従属競合リスクを伴う生存分析のための階層的コピュラに基づくアプローチ
- Authors: Xin Liu, Weijia Zhang, Min-Ling Zhang,
- Abstract要約: HACSurvは、競合するリスクを持つデータから構造や原因特異的生存関数を学習する生存分析手法である。
リスクと検閲の間の依存関係をキャプチャすることで、HACSurvはより良い生存予測を実現する。
- 参考スコア(独自算出の注目度): 51.95824566163554
- License:
- Abstract: In survival analysis, subjects often face competing risks; for example, individuals with cancer may also suffer from heart disease or other illnesses, which can jointly influence the prognosis of risks and censoring. Traditional survival analysis methods often treat competing risks as independent and fail to accommodate the dependencies between different conditions. In this paper, we introduce HACSurv, a survival analysis method that learns Hierarchical Archimedean Copulas structures and cause-specific survival functions from data with competing risks. HACSurv employs a flexible dependency structure using hierarchical Archimedean copulas to represent the relationships between competing risks and censoring. By capturing the dependencies between risks and censoring, HACSurv achieves better survival predictions and offers insights into risk interactions. Experiments on synthetic datasets demonstrate that our method can accurately identify the complex dependency structure and precisely predict survival distributions, whereas the compared methods exhibit significant deviations between their predictions and the true distributions. Experiments on multiple real-world datasets also demonstrate that our method achieves better survival prediction compared to previous state-of-the-art methods.
- Abstract(参考訳): 生存分析では、被験者は競合するリスクに直面することが多く、例えば、がん患者は心臓病や他の病気に悩まされ、リスクの予後や検閲に共同的に影響を及ぼすことがある。
従来の生存分析手法は、しばしば競合するリスクを独立したものとして扱うが、異なる条件間の依存関係に対応できない。
本稿では、階層的アルキメデスコピュラス構造と原因特異的生存関数を競合するリスクを持つデータから学習する生存分析手法であるHACSurvを紹介する。
HACSurvは、競合するリスクと検閲の関係を表現するために、階層的なアルキメデスのコプラを用いた柔軟な依存関係構造を採用している。
リスクと検閲の間の依存関係をキャプチャすることで、HACSurvはより良い生存予測を達成し、リスクインタラクションに関する洞察を提供する。
合成データセットを用いた実験により,本手法は複雑な依存関係構造を正確に同定し,生存率分布を正確に予測できることが示された。
また,複数の実世界のデータセットを用いた実験により,従来の最先端手法と比較して生存率の予測精度が向上することを示した。
関連論文リスト
- A Multimodal Object-level Contrast Learning Method for Cancer Survival Risk Prediction [9.005219442274344]
コンピュータ支援によるがん生存予測は、患者のタイムリーな治療において重要な役割を担っている。
がん生存リスク予測のための新しいトレーニング手法であるマルチモーダルオブジェクトレベルのコントラスト学習を提案する。
提案手法により訓練された生存リスク予測器は、2つの公共マルチモーダル癌データセット上で最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-09-03T07:36:34Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
現状の生存モデルと解釈可能かつ競合する新しい生存分析パイプラインを提案する。
我々のパイプラインは最先端のパフォーマンスを達成し、心不全のリスク要因に関する興味深い新しい洞察を提供する。
論文 参考訳(メタデータ) (2023-10-24T02:56:05Z) - A Deep Variational Approach to Clustering Survival Data [5.871238645229228]
変分深層クラスタリングにおけるクラスタサバイバルデータに対する新しい確率的アプローチを提案する。
提案手法は,説明変数と潜在的に検閲された生存時間の両方の分布を明らかにするために,深い生成モデルを用いている。
論文 参考訳(メタデータ) (2021-06-10T14:10:25Z) - WRSE -- a non-parametric weighted-resolution ensemble for predicting
individual survival distributions in the ICU [0.251657752676152]
集中治療室(ICU)における死亡リスクの動的評価は、患者を階層化し、治療効果を知らせたり、早期警戒システムの一部として機能したりすることができる。
現状の確率モデルと競合する結果を示すとともに,2~9倍のトレーニング時間を大幅に短縮する。
論文 参考訳(メタデータ) (2020-11-02T10:13:59Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
ニューラル常微分方程式を多状態生存モデル推定のためのフレキシブルで一般的な方法として用いる。
また,本モデルでは,サバイバルデータセット上での最先端性能を示すとともに,マルチステート環境での有効性を示す。
論文 参考訳(メタデータ) (2020-06-08T19:24:54Z) - Deep Survival Machines: Fully Parametric Survival Regression and
Representation Learning for Censored Data with Competing Risks [14.928328404160299]
本稿では,検閲データを用いた時系列予測問題において,相対リスクを推定するための新しいアプローチについて述べる。
我々のアプローチは、基礎となる生存分布の一定の比例的ハザードの強い仮定を必要としない。
これは検閲の有無で競合するリスクを伴う生存時間を完全にパラメトリックに推定する最初の作品である。
論文 参考訳(メタデータ) (2020-03-02T20:21:59Z) - Survival Cluster Analysis [93.50540270973927]
異なるリスクプロファイルを持つサブポピュレーションを特定するために、生存分析には未解決の必要性がある。
このニーズに対処するアプローチは、個々の成果のキャラクタリゼーションを改善する可能性が高い。
論文 参考訳(メタデータ) (2020-02-29T22:41:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。