Conditional Prediction ROC Bands for Graph Classification
- URL: http://arxiv.org/abs/2410.15239v1
- Date: Sun, 20 Oct 2024 00:44:59 GMT
- Title: Conditional Prediction ROC Bands for Graph Classification
- Authors: Yujia Wu, Bo Yang, Elynn Chen, Yuzhou Chen, Zheshi Zheng,
- Abstract summary: Prediction ROC (CP-ROC) bands offer uncertainty quantification for ROC curves and robustness to distributional shifts in test data.
We establish statistically guaranteed coverage for CP-ROC under a local exchangeability condition.
This addresses uncertainty challenges for ROC curves under non-iid setting, ensuring reliability when test graph distributions differ from training data.
- Score: 14.222892103838165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph classification in medical imaging and drug discovery requires accuracy and robust uncertainty quantification. To address this need, we introduce Conditional Prediction ROC (CP-ROC) bands, offering uncertainty quantification for ROC curves and robustness to distributional shifts in test data. Although developed for Tensorized Graph Neural Networks (TGNNs), CP-ROC is adaptable to general Graph Neural Networks (GNNs) and other machine learning models. We establish statistically guaranteed coverage for CP-ROC under a local exchangeability condition. This addresses uncertainty challenges for ROC curves under non-iid setting, ensuring reliability when test graph distributions differ from training data. Empirically, to establish local exchangeability for TGNNs, we introduce a data-driven approach to construct local calibration sets for graphs. Comprehensive evaluations show that CP-ROC significantly improves prediction reliability across diverse tasks. This method enhances uncertainty quantification efficiency and reliability for ROC curves, proving valuable for real-world applications with non-iid objects.
Related papers
- Enhancing Trustworthiness of Graph Neural Networks with Rank-Based Conformal Training [17.120502204791407]
Conformal Prediction can produce statistically guaranteed uncertainty estimates.
We propose a Rank-based CP during training framework to GNNs (RCP-GNN) for reliable uncertainty estimates.
arXiv Detail & Related papers (2025-01-06T05:19:24Z) - Conformal Prediction for Federated Graph Neural Networks with Missing Neighbor Information [2.404163279345609]
This study extends the applicability of Conformal Prediction to federated graph learning.
We tackle the missing links issue in distributed subgraphs to minimize its adverse effects on CP set sizes.
We introduce a Variational Autoencoder-based approach for reconstructing missing neighbors to mitigate the negative impact of missing data.
arXiv Detail & Related papers (2024-10-17T20:22:25Z) - Adapting Conformal Prediction to Distribution Shifts Without Labels [16.478151550456804]
Conformal prediction (CP) enables machine learning models to output prediction sets with guaranteed coverage rate.
Our goal is to improve the quality of CP-generated prediction sets using only unlabeled data from the test domain.
This is achieved by two new methods called ECP and EACP, that adjust the score function in CP according to the base model's uncertainty on the unlabeled test data.
arXiv Detail & Related papers (2024-06-03T15:16:02Z) - Conditional Shift-Robust Conformal Prediction for Graph Neural Network [0.0]
Graph Neural Networks (GNNs) have emerged as potent tools for predicting outcomes in graph-structured data.
Despite their efficacy, GNNs have limited ability to provide robust uncertainty estimates.
We propose Conditional Shift Robust (CondSR) conformal prediction for GNNs.
arXiv Detail & Related papers (2024-05-20T11:47:31Z) - Uncertainty Quantification over Graph with Conformalized Graph Neural
Networks [52.20904874696597]
Graph Neural Networks (GNNs) are powerful machine learning prediction models on graph-structured data.
GNNs lack rigorous uncertainty estimates, limiting their reliable deployment in settings where the cost of errors is significant.
We propose conformalized GNN (CF-GNN), extending conformal prediction (CP) to graph-based models for guaranteed uncertainty estimates.
arXiv Detail & Related papers (2023-05-23T21:38:23Z) - Evaluating Probabilistic Classifiers: The Triptych [62.997667081978825]
We propose and study a triptych of diagnostic graphics that focus on distinct and complementary aspects of forecast performance.
The reliability diagram addresses calibration, the receiver operating characteristic (ROC) curve diagnoses discrimination ability, and the Murphy diagram visualizes overall predictive performance and value.
arXiv Detail & Related papers (2023-01-25T19:35:23Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
We introduce the CORP approach, which generates provably statistically Consistent, Optimally binned, and Reproducible reliability diagrams in an automated way.
Corpor is based on non-parametric isotonic regression and implemented via the Pool-adjacent-violators (PAV) algorithm.
arXiv Detail & Related papers (2020-08-07T08:22:26Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.