論文の概要: Conditional Uncertainty Quantification for Tensorized Topological Neural Networks
- arxiv url: http://arxiv.org/abs/2410.15241v1
- Date: Sun, 20 Oct 2024 01:03:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:20:59.803242
- Title: Conditional Uncertainty Quantification for Tensorized Topological Neural Networks
- Title(参考訳): テンソル化トポロジカルニューラルネットワークの条件不確実性定量化
- Authors: Yujia Wu, Bo Yang, Yang Zhao, Elynn Chen, Yuzhou Chen, Zheshi Zheng,
- Abstract要約: グラフニューラルネットワーク(GNN)は,グラフ構造化データを解析するためのデファクトスタンダードとなっている。
近年の研究では、GNNによる不確実性推定の統計的信頼性に関する懸念が高まっている。
本稿では,交換不能なグラフ構造化データの不確かさを定量化する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 19.560300212956747
- License:
- Abstract: Graph Neural Networks (GNNs) have become the de facto standard for analyzing graph-structured data, leveraging message-passing techniques to capture both structural and node feature information. However, recent studies have raised concerns about the statistical reliability of uncertainty estimates produced by GNNs. This paper addresses this crucial challenge by introducing a novel technique for quantifying uncertainty in non-exchangeable graph-structured data, while simultaneously reducing the size of label prediction sets in graph classification tasks. We propose Conformalized Tensor-based Topological Neural Networks (CF-T2NN), a new approach for rigorous prediction inference over graphs. CF-T2NN employs tensor decomposition and topological knowledge learning to navigate and interpret the inherent uncertainty in decision-making processes. This method enables a more nuanced understanding and handling of prediction uncertainties, enhancing the reliability and interpretability of neural network outcomes. Our empirical validation, conducted across 10 real-world datasets, demonstrates the superiority of CF-T2NN over a wide array of state-of-the-art methods on various graph benchmarks. This work not only enhances the GNN framework with robust uncertainty quantification capabilities but also sets a new standard for reliability and precision in graph-structured data analysis.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データを解析するためのデファクトスタンダードとなり、メッセージパッシング技術を利用して、構造的特徴情報とノード的特徴情報の両方をキャプチャしている。
しかし、近年の研究では、GNNによる不確実性推定の統計的信頼性に関する懸念が高まっている。
本稿では、グラフ分類タスクにおけるラベル予測セットのサイズを同時に削減しつつ、交換不能なグラフ構造化データの不確実性を定量化する新しい手法を導入することで、この課題に対処する。
グラフ上の厳密な予測推定のための新しいアプローチとして,コンフォーマル化テンソルベーストポロジカルニューラルネットワーク(CF-T2NN)を提案する。
CF-T2NNは、テンソル分解とトポロジカル知識学習を用いて、意思決定プロセスにおける固有の不確実性をナビゲートし、解釈する。
この方法は、予測の不確実性のより微妙な理解と処理を可能にし、ニューラルネットワークの結果の信頼性と解釈可能性を高める。
実世界の10のデータセットにまたがって実施した実証検証では,様々なグラフベンチマークにおいて,さまざまな最先端手法に対するCF-T2NNの優位性を実証した。
この作業は、堅牢な不確実性定量化機能を備えたGNNフレームワークを強化するだけでなく、グラフ構造化データ解析における信頼性と精度の新しい標準も設定する。
関連論文リスト
- Positional Encoder Graph Quantile Neural Networks for Geographic Data [4.277516034244117]
我々は,PE-GNN,Quantile Neural Networks,および再校正技術を完全非パラメトリックフレームワークに統合する新しい手法である,位置グラフ量子ニューラルネットワーク(PE-GQNN)を紹介する。
ベンチマークデータセットの実験では、PE-GQNNは予測精度と不確実性の定量化の両方で既存の最先端手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-09-27T16:02:12Z) - xAI-Drop: Don't Use What You Cannot Explain [23.33477769275026]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習するための主要なパラダイムとして登場した。
GNNは過密化、一般化の欠如、解釈可能性の低下といった課題に直面している。
我々は、雑音の多いネットワーク要素をピンポイントする説明可能性を活用する新しいトポロジカルレベル降下正規化器であるxAI-Dropを紹介する。
論文 参考訳(メタデータ) (2024-07-29T14:53:45Z) - Conditional Shift-Robust Conformal Prediction for Graph Neural Network [0.0]
グラフニューラルネットワーク(GNN)は、グラフ構造化データの結果を予測する強力なツールとして登場した。
有効性にもかかわらず、GNNは堅牢な不確実性推定を提供する能力に制限がある。
本稿では,GNNに対する条件シフトロバスト(CondSR)の共形予測を提案する。
論文 参考訳(メタデータ) (2024-05-20T11:47:31Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - Neural Tangent Kernels Motivate Graph Neural Networks with
Cross-Covariance Graphs [94.44374472696272]
グラフニューラルネットワーク(GNN)の文脈におけるNTKとアライメントについて検討する。
その結果、2層GNNのアライメントの最適性に関する理論的保証が確立された。
これらの保証は、入力と出力データの相互共分散の関数であるグラフシフト演算子によって特徴づけられる。
論文 参考訳(メタデータ) (2023-10-16T19:54:21Z) - Uncertainty Quantification for Molecular Property Predictions with Graph Neural Architecture Search [2.711812013460678]
本稿では,分子特性予測のための自動不確実性定量化(UQ)手法であるAutoGNNUQを紹介する。
我々のアプローチでは、分散分解を用いてデータ(アラート)とモデル(エステミック)の不確実性を分離し、それらを減らすための貴重な洞察を提供する。
AutoGNNUQは、正確な不確実性定量化が意思決定に不可欠である薬物発見や材料科学などの領域で広く適用可能である。
論文 参考訳(メタデータ) (2023-07-19T20:03:42Z) - Uncertainty Quantification over Graph with Conformalized Graph Neural
Networks [52.20904874696597]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに基づく強力な機械学習予測モデルである。
GNNには厳密な不確実性見積が欠如しており、エラーのコストが重要な設定での信頼性の高いデプロイメントが制限されている。
本稿では,共形予測(CP)をグラフベースモデルに拡張した共形GNN(CF-GNN)を提案する。
論文 参考訳(メタデータ) (2023-05-23T21:38:23Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Training Stable Graph Neural Networks Through Constrained Learning [116.03137405192356]
グラフニューラルネットワーク(GNN)は、ネットワークデータから機能を学ぶためにグラフ畳み込みに依存する。
GNNは、グラフフィルタから受け継いだ特性である、基礎となるグラフの様々な種類の摂動に対して安定である。
本稿では,GNNの安定条件に制約を課すことにより,新たな制約付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-07T15:54:42Z) - Stochastic Graph Neural Networks [123.39024384275054]
グラフニューラルネットワーク(GNN)は、分散エージェント調整、制御、計画に応用したグラフデータの非線形表現をモデル化する。
現在のGNNアーキテクチャは理想的なシナリオを前提として,環境やヒューマンファクタ,あるいは外部攻撃によるリンク変動を無視している。
これらの状況において、GNNは、トポロジカルなランダム性を考慮していない場合、その分散タスクに対処することができない。
論文 参考訳(メタデータ) (2020-06-04T08:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。