論文の概要: xAI-Drop: Don't Use What You Cannot Explain
- arxiv url: http://arxiv.org/abs/2407.20067v2
- Date: Fri, 08 Nov 2024 17:49:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:52:56.673690
- Title: xAI-Drop: Don't Use What You Cannot Explain
- Title(参考訳): xAI-Drop: 説明できないものを使わない
- Authors: Vincenzo Marco De Luca, Antonio Longa, Andrea Passerini, Pietro Liò,
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習するための主要なパラダイムとして登場した。
GNNは、一般化の欠如や解釈可能性の低下といった課題に直面している。
トポロジカルレベル降下正則化器であるxAI-Dropを導入する。
- 参考スコア(独自算出の注目度): 23.33477769275026
- License:
- Abstract: Graph Neural Networks (GNNs) have emerged as the predominant paradigm for learning from graph-structured data, offering a wide range of applications from social network analysis to bioinformatics. Despite their versatility, GNNs face challenges such as lack of generalization and poor interpretability, which hinder their wider adoption and reliability in critical applications. Dropping has emerged as an effective paradigm for improving the generalization capabilities of GNNs. However, existing approaches often rely on random or heuristic-based selection criteria, lacking a principled method to identify and exclude nodes that contribute to noise and over-complexity in the model. In this work, we argue that explainability should be a key indicator of a model's quality throughout its training phase. To this end, we introduce xAI-Drop, a novel topological-level dropping regularizer that leverages explainability to pinpoint noisy network elements to be excluded from the GNN propagation mechanism. An empirical evaluation on diverse real-world datasets demonstrates that our method outperforms current state-of-the-art dropping approaches in accuracy, and improves explanation quality.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習するための主要なパラダイムとして登場し、ソーシャルネットワーク分析からバイオインフォマティクスまで幅広い応用を提供している。
汎用性にもかかわらず、GNNは一般化の欠如や解釈可能性の低さといった課題に直面しており、重要なアプリケーションにおいて広く採用され、信頼性が損なわれている。
ドロップは、GNNの一般化能力を改善する効果的なパラダイムとして登場した。
しかし、既存のアプローチは、しばしばランダムまたはヒューリスティックな選択基準に依存しており、モデルにおけるノイズや過剰な複雑さに寄与するノードを識別し排除する原則的な方法が欠如している。
本研究では,学習段階を通じてモデルの品質を示す重要な指標として,説明可能性について論じる。
この目的のために、GNN伝搬機構から除外されるノイズの多いネットワーク要素をピンポイントする説明可能性を活用する新しいトポロジカルレベル降下正規化器であるxAI-Dropを導入する。
実世界の多様なデータセットに対する実証的な評価は、我々の手法が現在の最先端のドロップアプローチよりも精度が高く、説明品質が向上していることを示している。
関連論文リスト
- DeCaf: A Causal Decoupling Framework for OOD Generalization on Node Classification [14.96980804513399]
グラフニューラルネットワーク(GNN)は、分散シフトの影響を受けやすいため、クリティカルドメインの脆弱性やセキュリティ上の問題が発生する。
不変(機能、構造)-ラベルマッピングの学習を目標とする既存の方法は、データ生成プロセスに関する過度に単純化された仮定に依存することが多い。
構造因果モデル(SCM)を用いたより現実的なグラフデータ生成モデルを提案する。
本稿では,非バイアスな特徴ラベルと構造ラベルのマッピングを独立に学習する,カジュアルなデカップリングフレームワークDeCafを提案する。
論文 参考訳(メタデータ) (2024-10-27T00:22:18Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
グラフニューラルネットワークは、様々なアプリケーションにまたがる強力なパフォーマンスで認識されている。
BPには、その生物学的妥当性に挑戦する制限があり、グラフベースのタスクのためのトレーニングニューラルネットワークの効率、スケーラビリティ、並列性に影響を与える。
半教師付き学習のケーススタディを用いて,GNNに適した新しい前方学習フレームワークであるDFA-GNNを提案する。
論文 参考訳(メタデータ) (2024-06-04T07:24:51Z) - Certifying Robustness of Graph Convolutional Networks for Node Perturbation with Polyhedra Abstract Interpretation [3.0560105799516046]
グラフ畳み込みニューラルネットワーク(GCN)は、トレーニングデータからグラフベースの知識表現を学習するための強力なツールである。
GCNは入力グラフの小さな摂動に弱いため、入力障害や敵攻撃の影響を受けやすい。
本稿では,ノード特徴摂動の存在下でのノード分類のためのGCNロバスト性認証手法を提案する。
論文 参考訳(メタデータ) (2024-05-14T14:21:55Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - Attentional Graph Neural Networks for Robust Massive Network
Localization [20.416879207269446]
グラフニューラルネットワーク(GNN)は、機械学習における分類タスクの顕著なツールとして登場した。
本稿では,GNNとアテンション機構を統合し,ネットワークローカライゼーションという難解な非線形回帰問題に対処する。
我々はまず,厳密な非視線(NLOS)条件下でも例外的な精度を示すグラフ畳み込みネットワーク(GCN)に基づく新しいネットワークローカライゼーション手法を提案する。
論文 参考訳(メタデータ) (2023-11-28T15:05:13Z) - Probabilistically Rewired Message-Passing Neural Networks [41.554499944141654]
メッセージパッシンググラフニューラルネットワーク(MPNN)は、グラフ構造化入力を処理する強力なツールとして登場した。
MPNNは、潜在的なノイズや欠落した情報を無視して、固定された入力グラフ構造で動作する。
確率的に再構成されたMPNN(PR-MPNN)を考案し、より有益なものを省略しながら、関連するエッジを追加することを学習する。
論文 参考訳(メタデータ) (2023-10-03T15:43:59Z) - Uncertainty-Aware Robust Learning on Noisy Graphs [16.66112191539017]
本稿では,分散的ロバストな最適化を動機とした,新しい不確実性を考慮したグラフ学習フレームワークを提案する。
具体的には、グラフニューラルネットワークベースのエンコーダを使用して、ノードの特徴を埋め込んで、最適なノード埋め込みを見つけます。
このような不確実性を考慮した学習プロセスは、ノード表現の改善と、より堅牢なグラフ予測モデルをもたらす。
論文 参考訳(メタデータ) (2023-06-14T02:45:14Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
グラフ構造化データに対する半教師付き学習(SSL)は、多くのネットワークサイエンスアプリケーションに現れる。
グラフ上の学習を効率的に管理するために,近年,グラフニューラルネットワーク(GNN)の変種が開発されている。
実際に成功したにも拘わらず、既存の手法のほとんどは、不確実な結節属性を持つグラフを扱うことができない。
ノイズ測定によって得られたデータに関連する分布の不確実性によっても問題が発生する。
分散ロバストな学習フレームワークを開発し,摂動に対する定量的ロバスト性を示すモデルを訓練する。
論文 参考訳(メタデータ) (2021-10-20T14:23:54Z) - Towards an Efficient and General Framework of Robust Training for Graph
Neural Networks [96.93500886136532]
グラフニューラルネットワーク(GNN)は、いくつかの基本的な推論タスクに大きく進歩している。
GNNの目覚ましい性能にもかかわらず、グラフ構造上の摂動を慎重に作り、誤った予測を下すことが観察されている。
我々は,強靭なGNNを得るために,欲求探索アルゴリズムとゼロ階法を利用する汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-25T15:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。