Multipartite entangling power by von Neumann entropy
- URL: http://arxiv.org/abs/2410.15253v1
- Date: Sun, 20 Oct 2024 02:18:36 GMT
- Title: Multipartite entangling power by von Neumann entropy
- Authors: Xinyu Qiu, Zhiwei Song, Lin Chen,
- Abstract summary: Quantifying entanglement generation of a multipartite unitary operation is a key problem in quantum information processing.
We analytically derive the entangling power of Schmidt-rank-two multi-qubit unitary operations by the minimal convex sum of modulo-one complex numbers.
We investigate the widely-used multi-qubit gates, for example, the entangling and assisted entangling power of the $n$-qubit Toffoli gate is one ebit.
- Score: 6.193378336510727
- License:
- Abstract: Quantifying the entanglement generation of a multipartite unitary operation is a key problem in quantum information processing. We introduce the definition of multipartite entangling, assisted entangling, and disentangling power, which is a natural generalization of the bipartite ones. We show that they are assumed at a specified quantum state. We analytically derive the entangling power of Schmidt-rank-two multi-qubit unitary operations by the minimal convex sum of modulo-one complex numbers. Besides we show the necessary and sufficient condition that the assisted entangling power of Schmidt-rank-two unitary operations reaches the maximum. We further investigate the widely-used multi-qubit gates, for example, the entangling and assisted entangling power of the $n$-qubit Toffoli gate is one ebit. The entangling power of the three-qubit Fredkin gate is two ebits, and that of the four-qubit Fredkin gate is in two to $\log_25$ ebits.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - The Power of Unentangled Quantum Proofs with Non-negative Amplitudes [55.90795112399611]
We study the power of unentangled quantum proofs with non-negative amplitudes, a class which we denote $textQMA+(2)$.
In particular, we design global protocols for small set expansion, unique games, and PCP verification.
We show that QMA(2) is equal to $textQMA+(2)$ provided the gap of the latter is a sufficiently large constant.
arXiv Detail & Related papers (2024-02-29T01:35:46Z) - Quantum circuit for multi-qubit Toffoli gate with optimal resource [6.727984016678534]
We design new quantum circuits for the $n$-Toffoli gate and general multi-controlled unitary, which have only $O(log n)$-depth and $O(n)$-size.
We demonstrate that without the assistance of ancillary qubit, any quantum circuit implementation of multi-qubit Toffoli gate must employ exponential precision gates.
arXiv Detail & Related papers (2024-02-07T17:53:21Z) - Quantum convolutional channels and multiparameter families of 2-unitary matrices [0.0]
We present a novel approach to construct quantum channels with large entangling capacities inspired by convolution.
In particular, we identify conditions necessary for the convolutional channels constructed using our method to possess maximal entangling power.
We establish new, continuous classes of bipartite 2-unitary matrices of dimension $d2$ for $d = 7$ and $d = 9$, with $2$ and $4$ free nonlocal parameters.
arXiv Detail & Related papers (2023-12-29T18:14:56Z) - Variational-quantum-eigensolver-inspired optimization for spin-chain work extraction [39.58317527488534]
Energy extraction from quantum sources is a key task to develop new quantum devices such as quantum batteries.
One of the main issues to fully extract energy from the quantum source is the assumption that any unitary operation can be done on the system.
We propose an approach to optimize the extractable energy inspired by the variational quantum eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2023-10-11T15:59:54Z) - Efficient parallelization of quantum basis state shift [0.0]
We optimize the state shift algorithm by incorporating the shift in different directions in parallel.
This provides a significant reduction in the depth of the quantum circuit in comparison to the currently known methods.
We focus on the one-dimensional and periodic shift, but note that the method can be extended to more complex cases.
arXiv Detail & Related papers (2023-04-04T11:01:08Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Halving the cost of quantum multiplexed rotations [0.0]
We improve the number of $T$ gates needed for a $b$-bit approximation of a multiplexed quantum gate with $c$ controls.
Our results roughly halve the cost of state-of-art electronic structure simulations based on qubitization of double-factorized or tensor-hypercontracted representations.
arXiv Detail & Related papers (2021-10-26T06:49:44Z) - Straddling-gates problem in multipartite quantum systems [20.428960719376164]
We study a variant of quantum circuit complexity, the binding complexity.
We show that any $m$partite Schmidt decomposable state has binding complexity linear in $m$, which hints its multi-separable property.
arXiv Detail & Related papers (2021-10-13T16:28:12Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.