論文の概要: EPIC: Efficient Position-Independent Context Caching for Serving Large Language Models
- arxiv url: http://arxiv.org/abs/2410.15332v1
- Date: Sun, 20 Oct 2024 08:42:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:19:41.933296
- Title: EPIC: Efficient Position-Independent Context Caching for Serving Large Language Models
- Title(参考訳): EPIC:大規模言語モデル実行のための効率的な位置非依存コンテキストキャッシング
- Authors: Junhao Hu, Wenrui Huang, Haoyi Wang, Weidong Wang, Tiancheng Hu, Qin Zhang, Hao Feng, Xusheng Chen, Yizhou Shan, Tao Xie,
- Abstract要約: EPICは、大きな言語モデルのための位置非依存のコンテキストキャッシュを導入している。
EPICはTTFTの最大8倍のスループットと既存のシステムに対する7倍のスループットを提供する。
- 参考スコア(独自算出の注目度): 19.510078997414606
- License:
- Abstract: Large Language Models (LLMs) are critical for a wide range of applications, but serving them efficiently becomes increasingly challenging as inputs become more complex. Context caching improves serving performance by exploiting inter-request dependency and reusing key-value (KV) cache across requests, thus improving time-to-first-token (TTFT). However, existing prefix-based context caching requires exact token prefix matches, limiting cache reuse in few-shot learning, multi-document QA, or retrieval-augmented generation, where prefixes may vary. In this paper, we present EPIC, an LLM serving system that introduces position-independent context caching (PIC), enabling modular KV cache reuse regardless of token chunk position (or prefix). EPIC features two key designs: AttnLink, which leverages static attention sparsity to minimize recomputation for accuracy recovery, and KVSplit, a customizable chunking method that preserves semantic coherence. Our experiments demonstrate that Epic delivers up to 8x improvements in TTFT and 7x throughput over existing systems, with negligible or no accuracy loss. By addressing the limitations of traditional caching approaches, Epic enables more scalable and efficient LLM inference.
- Abstract(参考訳): 大規模言語モデル(LLM)は、幅広いアプリケーションに必須であるが、入力がより複雑になるにつれて、効率的にそれらを提供するのがますます困難になっている。
コンテキストキャッシュは、リクエスト間の依存性を利用して、リクエスト間でキー値(KV)キャッシュを再利用することで、サービスパフォーマンスを向上させる。
しかし、既存のプレフィックスベースのコンテキストキャッシュは、正確なトークンプレフィックスマッチ、数ショットの学習におけるキャッシュ再利用の制限、複数ドキュメントのQA、あるいはプレフィックスが異なるかもしれない検索拡張生成を必要とする。
本稿では,トークンチャンクの位置(またはプレフィックス)に関わらず,モジュール型KVキャッシュの再利用を可能にする,位置独立コンテキストキャッシュ(PIC)を導入したLCMサービスシステムEPICを提案する。
EPICには2つの重要な設計がある: AttnLinkは静的な注意空間を利用して精度回復のための再計算を最小化する。
我々の実験は、EpicがTTFTの最大8倍のスループットと既存のシステムの7倍のスループットを、無視できるか、あるいは精度の低下のない形で提供することを示した。
従来のキャッシュアプローチの制限に対処することで、Epicはよりスケーラブルで効率的なLLM推論を可能にします。
関連論文リスト
- ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Efficient Inference of Vision Instruction-Following Models with Elastic Cache [76.44955111634545]
我々は,命令追従型大規模視覚言語モデルの効率的なデプロイのための新しい戦略であるElastic Cacheを紹介する。
本稿では,冗長キャッシュを具現化する重要なキャッシュマージ戦略を提案する。
命令符号化では,キャッシュの重要性を評価するために周波数を利用する。
様々なLVLMの結果は、Elastic Cacheが効率を向上するだけでなく、言語生成における既存のプルーニングメソッドよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-25T15:29:05Z) - Training-Free Exponential Context Extension via Cascading KV Cache [49.608367376911694]
カスケードサブキャッシュバッファを利用して,最も関連性の高いトークンを選択的に保持する機構を導入する。
本手法は,1Mトークンのフラッシュアテンションと比較して,プリフィルステージ遅延を6.8倍削減する。
論文 参考訳(メタデータ) (2024-06-24T03:59:17Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
メモリフットプリントを大幅に最小化するKVキャッシュを最適化する革新的な手法を提案する。
KVキャッシュ消去ポリシーであるCORMは、モデル微調整を必要とせずに、推論に必要なキーと値のペアを動的に保持する。
検証の結果,CORMはKVキャッシュの推論メモリ使用量を最大70%削減し,LongBenchの6つのタスクで性能劣化を無視できることがわかった。
論文 参考訳(メタデータ) (2024-04-24T16:11:54Z) - XC-Cache: Cross-Attending to Cached Context for Efficient LLM Inference [20.249206904309816]
インコンテキスト学習(ICL)アプローチは典型的には、参照情報に基づいて条件デコーダのみの言語モデルを生成するプロンプトを活用する。
この研究は、エンコーダ・デコーダアーキテクチャにインスパイアされたモデルを導入し、プロンプトなしで参照テキストの条件生成にクロスアテンションを使用することにより、これらの制限に対処する。
質問応答(QA)をテストベッドとして使用し、条件生成能力を評価し、ICLより優れており、微調整された誘導LDMと同等であり、標準KVキャッシュと比較して空間フットプリントを2桁の精度で大幅に削減する。
論文 参考訳(メタデータ) (2024-04-23T18:10:42Z) - QAQ: Quality Adaptive Quantization for LLM KV Cache [3.163526369095745]
モデルデプロイメントのボトルネックは、コンテキスト長のキーバリューキャッシュの線形拡張によって生じる。
KVキャッシュのための品質適応量子化スキームQAQを提案する。
論文 参考訳(メタデータ) (2024-03-07T16:42:37Z) - ChunkAttention: Efficient Self-Attention with Prefix-Aware KV Cache and Two-Phase Partition [3.659659889927316]
ChunkAttentionは、大きな言語モデルのためのプレフィックス対応のセルフアテンションモジュールである。
複数のリクエストにまたがる一致したプロンプトプレフィックスを検出し、実行時にそのキー/値テンソルをメモリで共有する。
実験の結果、ChunkAttentionは最先端の実装と比較して、自己保持カーネルを3.2-4.8$times$で高速化できることがわかった。
論文 参考訳(メタデータ) (2024-02-23T09:29:19Z) - Get More with LESS: Synthesizing Recurrence with KV Cache Compression for Efficient LLM Inference [78.65321721142624]
我々はキー値(KV)キャッシュによって課されるメモリボトルネックに焦点を当てる。
既存のKVキャッシュ手法は、比較的重要でないKVペアの大きなスワストを刈り取ったり、取り除いたりすることでこの問題に対処する。
本稿では,固定サイズキャッシュと退避型キャッシュを簡易に統合したLESSを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:54:56Z) - Accelerating Deep Learning Classification with Error-controlled
Approximate-key Caching [72.50506500576746]
我々は、近似キーキャッシングと名付けた新しいキャッシングパラダイムを提案する。
近似キャッシュはDL推論の負荷を軽減し、システムのスループットを向上するが、近似誤差を導入する。
我々は古典的なLRUと理想的なキャッシュのキャッシュシステム性能を解析的にモデル化し、期待される性能のトレース駆動評価を行い、提案手法の利点を最先端の類似キャッシュと比較した。
論文 参考訳(メタデータ) (2021-12-13T13:49:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。