Ethical AI in Retail: Consumer Privacy and Fairness
- URL: http://arxiv.org/abs/2410.15369v1
- Date: Sun, 20 Oct 2024 12:00:14 GMT
- Title: Ethical AI in Retail: Consumer Privacy and Fairness
- Authors: Anthonette Adanyin,
- Abstract summary: The adoption of artificial intelligence (AI) in retail has significantly transformed the industry, enabling more personalized services and efficient operations.
However, the rapid implementation of AI technologies raises ethical concerns, particularly regarding consumer privacy and fairness.
This study aims to analyze the ethical challenges of AI applications in retail, explore ways retailers can implement AI technologies ethically while remaining competitive, and provide recommendations on ethical AI practices.
- Score: 0.0
- License:
- Abstract: The adoption of artificial intelligence (AI) in retail has significantly transformed the industry, enabling more personalized services and efficient operations. However, the rapid implementation of AI technologies raises ethical concerns, particularly regarding consumer privacy and fairness. This study aims to analyze the ethical challenges of AI applications in retail, explore ways retailers can implement AI technologies ethically while remaining competitive, and provide recommendations on ethical AI practices. A descriptive survey design was used to collect data from 300 respondents across major e-commerce platforms. Data were analyzed using descriptive statistics, including percentages and mean scores. Findings shows a high level of concerns among consumers regarding the amount of personal data collected by AI-driven retail applications, with many expressing a lack of trust in how their data is managed. Also, fairness is another major issue, as a majority believe AI systems do not treat consumers equally, raising concerns about algorithmic bias. It was also found that AI can enhance business competitiveness and efficiency without compromising ethical principles, such as data privacy and fairness. Data privacy and transparency were highlighted as critical areas where retailers need to focus their efforts, indicating a strong demand for stricter data protection protocols and ongoing scrutiny of AI systems. The study concludes that retailers must prioritize transparency, fairness, and data protection when deploying AI systems. The study recommends ensuring transparency in AI processes, conducting regular audits to address biases, incorporating consumer feedback in AI development, and emphasizing consumer data privacy.
Related papers
- Enhancing transparency in AI-powered customer engagement [0.0]
This paper addresses the critical challenge of building consumer trust in AI-powered customer engagement.
Despite the potential of AI to revolutionise business operations, widespread concerns about misinformation and the opacity of AI decision-making processes hinder trust.
By adopting a holistic approach to transparency and explainability, businesses can cultivate trust in AI technologies.
arXiv Detail & Related papers (2024-09-13T20:26:11Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
generative AI has attracted much attention from both academic and industrial fields.
Secure and privacy-preserving mobile crowdsensing (SPPMCS) has been widely applied in data collection/ acquirement.
arXiv Detail & Related papers (2024-05-17T04:00:58Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Guideline for Trustworthy Artificial Intelligence -- AI Assessment
Catalog [0.0]
It is clear that AI and business models based on it can only reach their full potential if AI applications are developed according to high quality standards.
The issue of the trustworthiness of AI applications is crucial and is the subject of numerous major publications.
This AI assessment catalog addresses exactly this point and is intended for two target groups.
arXiv Detail & Related papers (2023-06-20T08:07:18Z) - Certification Labels for Trustworthy AI: Insights From an Empirical
Mixed-Method Study [0.0]
This study empirically investigated certification labels as a promising solution.
We demonstrate that labels can significantly increase end-users' trust and willingness to use AI.
However, end-users' preferences for certification labels and their effect on trust and willingness to use AI were more pronounced in high-stake scenarios.
arXiv Detail & Related papers (2023-05-15T09:51:10Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Advances in Automatically Rating the Trustworthiness of Text Processing
Services [9.696492590163016]
AI services are known to have unstable behavior when subjected to changes in data, models or users.
The current approach of assessing AI services in a black box setting, where the consumer does not have access to the AI's source code or training data, is limited.
Our approach is inspired by the success of nutritional labeling in food industry to promote health and seeks to assess and rate AI services for trust from the perspective of an independent stakeholder.
arXiv Detail & Related papers (2023-02-04T14:27:46Z) - How Different Groups Prioritize Ethical Values for Responsible AI [75.40051547428592]
Private companies, public sector organizations, and academic groups have outlined ethical values they consider important for responsible AI technologies.
While their recommendations converge on a set of central values, little is known about the values a more representative public would find important for the AI technologies they interact with and might be affected by.
We conducted a survey examining how individuals perceive and prioritize responsible AI values across three groups.
arXiv Detail & Related papers (2022-05-16T14:39:37Z) - AI Assurance using Causal Inference: Application to Public Policy [0.0]
Most AI approaches can only be represented as "black boxes" and suffer from the lack of transparency.
It is crucial not only to develop effective and robust AI systems, but to make sure their internal processes are explainable and fair.
arXiv Detail & Related papers (2021-12-01T16:03:06Z) - Trustworthy AI [75.99046162669997]
Brittleness to minor adversarial changes in the input data, ability to explain the decisions, address the bias in their training data, are some of the most prominent limitations.
We propose the tutorial on Trustworthy AI to address six critical issues in enhancing user and public trust in AI systems.
arXiv Detail & Related papers (2020-11-02T20:04:18Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
We study whether features that reveal case-specific model information can calibrate trust and improve the joint performance of the human and AI.
We show that confidence score can help calibrate people's trust in an AI model, but trust calibration alone is not sufficient to improve AI-assisted decision making.
arXiv Detail & Related papers (2020-01-07T15:33:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.