Enhancing transparency in AI-powered customer engagement
- URL: http://arxiv.org/abs/2410.01809v1
- Date: Fri, 13 Sep 2024 20:26:11 GMT
- Title: Enhancing transparency in AI-powered customer engagement
- Authors: Tara DeZao,
- Abstract summary: This paper addresses the critical challenge of building consumer trust in AI-powered customer engagement.
Despite the potential of AI to revolutionise business operations, widespread concerns about misinformation and the opacity of AI decision-making processes hinder trust.
By adopting a holistic approach to transparency and explainability, businesses can cultivate trust in AI technologies.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the critical challenge of building consumer trust in AI-powered customer engagement by emphasising the necessity for transparency and accountability. Despite the potential of AI to revolutionise business operations and enhance customer experiences, widespread concerns about misinformation and the opacity of AI decision-making processes hinder trust. Surveys highlight a significant lack of awareness among consumers regarding their interactions with AI, alongside apprehensions about bias and fairness in AI algorithms. The paper advocates for the development of explainable AI models that are transparent and understandable to both consumers and organisational leaders, thereby mitigating potential biases and ensuring ethical use. It underscores the importance of organisational commitment to transparency practices beyond mere regulatory compliance, including fostering a culture of accountability, prioritising clear data policies and maintaining active engagement with stakeholders. By adopting a holistic approach to transparency and explainability, businesses can cultivate trust in AI technologies, bridging the gap between technological innovation and consumer acceptance, and paving the way for more ethical and effective AI-powered customer engagements. KEYWORDS: artificial intelligence (AI), transparency
Related papers
- Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - Ethical AI in Retail: Consumer Privacy and Fairness [0.0]
The adoption of artificial intelligence (AI) in retail has significantly transformed the industry, enabling more personalized services and efficient operations.
However, the rapid implementation of AI technologies raises ethical concerns, particularly regarding consumer privacy and fairness.
This study aims to analyze the ethical challenges of AI applications in retail, explore ways retailers can implement AI technologies ethically while remaining competitive, and provide recommendations on ethical AI practices.
arXiv Detail & Related papers (2024-10-20T12:00:14Z) - Assistive AI for Augmenting Human Decision-making [3.379906135388703]
The paper shows how AI can assist in the complex process of decision-making while maintaining human oversight.
Central to our framework are the principles of privacy, accountability, and credibility.
arXiv Detail & Related papers (2024-10-18T10:16:07Z) - Trustworthy and Responsible AI for Human-Centric Autonomous Decision-Making Systems [2.444630714797783]
We review and discuss the intricacies of AI biases, definitions, methods of detection and mitigation, and metrics for evaluating bias.
We also discuss open challenges with regard to the trustworthiness and widespread application of AI across diverse domains of human-centric decision making.
arXiv Detail & Related papers (2024-08-28T06:04:25Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Path To Gain Functional Transparency In Artificial Intelligence With
Meaningful Explainability [0.0]
As AI systems become increasingly sophisticated, ensuring their transparency and explainability becomes crucial.
We propose a design for user-centered compliant-by-design transparency in transparent systems.
By providing a comprehensive understanding of the challenges associated with transparency in AI systems, we aim to facilitate the development of AI systems that are accountable, trustworthy, and aligned with societal values.
arXiv Detail & Related papers (2023-10-13T04:25:30Z) - VerifAI: Verified Generative AI [22.14231506649365]
Generative AI has made significant strides, yet concerns about its accuracy and reliability continue to grow.
We propose that verifying the outputs of generative AI from a data management perspective is an emerging issue for generative AI.
Our vision is to promote the development of verifiable generative AI and contribute to a more trustworthy and responsible use of AI.
arXiv Detail & Related papers (2023-07-06T06:11:51Z) - Users are the North Star for AI Transparency [111.5679109784322]
Despite widespread calls for transparent artificial intelligence systems, the term is too overburdened with disparate meanings to express precise policy aims or to orient concrete lines of research.
Part of why this happens is that a clear ideal of AI transparency goes unsaid in this body of work.
We explicitly name such a north star -- transparency that is user-centered, user-appropriate, and honest.
arXiv Detail & Related papers (2023-03-09T18:53:29Z) - Designing for Responsible Trust in AI Systems: A Communication
Perspective [56.80107647520364]
We draw from communication theories and literature on trust in technologies to develop a conceptual model called MATCH.
We highlight transparency and interaction as AI systems' affordances that present a wide range of trustworthiness cues to users.
We propose a checklist of requirements to help technology creators identify appropriate cues to use.
arXiv Detail & Related papers (2022-04-29T00:14:33Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.