Formalization of Differential Privacy in Isabelle/HOL
- URL: http://arxiv.org/abs/2410.15386v1
- Date: Sun, 20 Oct 2024 13:06:13 GMT
- Title: Formalization of Differential Privacy in Isabelle/HOL
- Authors: Tetsuya Sato, Yasuhiko Minamide,
- Abstract summary: We propose an Isabelle/HOL library for formalizing differential privacy in a general setting.
To our knowledge, it is the first formalization of differential privacy that supports continuous probability distributions.
- Score: 0.16574413179773761
- License:
- Abstract: Differential privacy is a statistical definition of privacy that has attracted the interest of both academia and industry. Its formulations are easy to understand, but the differential privacy of databases is complicated to determine. One of the reasons for this is that small changes in database programs can break their differential privacy. Therefore, formal verification of differential privacy has been studied for over a decade. In this paper, we propose an Isabelle/HOL library for formalizing differential privacy in a general setting. To our knowledge, it is the first formalization of differential privacy that supports continuous probability distributions. First, we formalize the standard definition of differential privacy and its basic properties. Second, we formalize the Laplace mechanism and its differential privacy. Finally, we formalize the differential privacy of the report noisy max mechanism.
Related papers
- Differential Privacy Overview and Fundamental Techniques [63.0409690498569]
This chapter is meant to be part of the book "Differential Privacy in Artificial Intelligence: From Theory to Practice"
It starts by illustrating various attempts to protect data privacy, emphasizing where and why they failed.
It then defines the key actors, tasks, and scopes that make up the domain of privacy-preserving data analysis.
arXiv Detail & Related papers (2024-11-07T13:52:11Z) - Masked Differential Privacy [64.32494202656801]
We propose an effective approach called masked differential privacy (DP), which allows for controlling sensitive regions where differential privacy is applied.
Our method operates selectively on data and allows for defining non-sensitive-temporal regions without DP application or combining differential privacy with other privacy techniques within data samples.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Position: Challenges and Opportunities for Differential Privacy in the U.S. Federal Government [34.255047514441195]
We seek to elucidate challenges and opportunities for differential privacy within the federal government setting.
We highlight three significant challenges which currently restrict the use of differential privacy in the U.S. government.
We provide two examples where differential privacy can enhance the capabilities of government agencies.
arXiv Detail & Related papers (2024-10-21T18:46:05Z) - A Statistical Viewpoint on Differential Privacy: Hypothesis Testing, Representation and Blackwell's Theorem [30.365274034429508]
We argue that differential privacy can be considered a textitpure statistical concept.
$f$-differential privacy is a unified framework for analyzing privacy bounds in data analysis and machine learning.
arXiv Detail & Related papers (2024-09-14T23:47:22Z) - Models Matter: Setting Accurate Privacy Expectations for Local and Central Differential Privacy [14.40391109414476]
We design and evaluate new explanations of differential privacy for the local and central models.
We find that consequences-focused explanations in the style of privacy nutrition labels are a promising approach for setting accurate privacy expectations.
arXiv Detail & Related papers (2024-08-16T01:21:57Z) - Adaptive Privacy Composition for Accuracy-first Mechanisms [55.53725113597539]
Noise reduction mechanisms produce increasingly accurate answers.
Analysts only pay the privacy cost of the least noisy or most accurate answer released.
There has yet to be any study on how ex-post private mechanisms compose.
We develop privacy filters that allow an analyst to adaptively switch between differentially private and ex-post private mechanisms.
arXiv Detail & Related papers (2023-06-24T00:33:34Z) - On Differentially Private Online Predictions [74.01773626153098]
We introduce an interactive variant of joint differential privacy towards handling online processes.
We demonstrate that it satisfies (suitable variants) of group privacy, composition, and post processing.
We then study the cost of interactive joint privacy in the basic setting of online classification.
arXiv Detail & Related papers (2023-02-27T19:18:01Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
We study the connection between the per-subject norm in DP neural networks and individual privacy loss.
We introduce a novel metric termed the Privacy Loss-Input Susceptibility (PLIS) which allows one to apportion the subject's privacy loss to their input attributes.
arXiv Detail & Related papers (2022-11-18T11:39:03Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
We consider partial differential privacy (DP), which allows quantifying the privacy guarantee on a per-attribute basis.
In this work, we study several basic data analysis and learning tasks, and design algorithms whose per-attribute privacy parameter is smaller that the best possible privacy parameter for the entire record of a person.
arXiv Detail & Related papers (2022-09-08T22:43:50Z) - Auditing Differentially Private Machine Learning: How Private is Private
SGD? [16.812900569416062]
We investigate whether Differentially Private SGD offers better privacy in practice than what is guaranteed by its state-of-the-art analysis.
We do so via novel data poisoning attacks, which we show correspond to realistic privacy attacks.
arXiv Detail & Related papers (2020-06-13T20:00:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.