論文の概要: Reinforcement Learning-Based REST API Testing with Multi-Coverage
- arxiv url: http://arxiv.org/abs/2410.15399v1
- Date: Sun, 20 Oct 2024 14:20:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:19:54.980217
- Title: Reinforcement Learning-Based REST API Testing with Multi-Coverage
- Title(参考訳): マルチサーバによる強化学習ベースのREST APIテスト
- Authors: Tien-Quang Nguyen, Nghia-Hieu Cong, Ngoc-Minh Quach, Hieu Dinh Vo, Son Nguyen,
- Abstract要約: MUCORESTは、Qラーニングを利用してコードカバレッジと出力カバレッジを最大化する、新しい強化学習(RL)ベースのAPIテストアプローチである。
MUCORESTは、発見されたAPIバグの数で、最先端のAPIテストアプローチを11.6-261.1%上回っている。
- 参考スコア(独自算出の注目度): 4.127886193201882
- License:
- Abstract: REST (Representational State Transfer) APIs have become integral for data communication and exchange due to their simplicity, scalability, and compatibility with web standards. However, ensuring REST APIs' reliability through rigorous testing poses significant challenges, given the complexities of operations, parameters, inputs, dependencies, and call sequences. In this paper, we introduce MUCOREST, a novel Reinforcement Learning (RL)-based API testing approach that leverages Q-learning to maximize code coverage and output coverage, thereby improving bug discovery. By focusing on these proximate objectives rather than the abstract goal of maximizing failures, MUCOREST effectively discovers critical code areas and diverse API behaviors. The experimental results on a benchmark of 10 services show that MUCOREST significantly outperforms state-of-the-art API testing approaches by 11.6-261.1% in the number of discovered API bugs. MUCOREST can generate much fewer API calls to discover the same number of bugs compared to the other approaches. Furthermore, 12.17%-64.09% of the bugs discovered by the other techniques can also be found by MUCOREST.
- Abstract(参考訳): REST (Representational State Transfer) APIは、そのシンプルさ、スケーラビリティ、Web標準との互換性のために、データ通信と交換に不可欠なものになっています。
しかし、厳格なテストを通じてREST APIの信頼性を確保することは、操作、パラメータ、インプット、依存関係、呼び出しシーケンスの複雑さを考えると、重大な課題となる。
本稿では、Qラーニングを活用してコードカバレッジと出力カバレッジを最大化し、バグ発見を改善する新しい強化学習(RL)ベースのAPIテスティングアプローチであるMUCORESTを紹介する。
フェールを最大化するという抽象的な目標ではなく、これらのプロキシ目的に焦点を当てることで、MUCORESTは重要なコード領域と多様なAPI動作を効果的に発見する。
10のサービスのベンチマークでの実験結果によると、MUCORESTは、発見されたAPIバグの数で、最先端のAPIテストアプローチを11.6-261.1%上回っている。
MUCORESTは、他のアプローチと比べて、同じ数のバグを発見するために、APIコールをはるかに少なくすることができる。
さらに、他のテクニックによって発見されたバグの12.17%-64.09%はMUCORESTでも見られる。
関連論文リスト
- Utilizing API Response for Test Refinement [2.8002188463519944]
本稿では,応答メッセージを利用した動的テスト改善手法を提案する。
インテリジェントエージェントを使用すると、テストシナリオを生成するためにさらに使用されるAPI仕様に制約が追加される。
提案されたアプローチは、4xxレスポンスの数を減少させ、より現実的なテストケースを生成するための一歩を踏み出した。
論文 参考訳(メタデータ) (2025-01-30T05:26:32Z) - LlamaRestTest: Effective REST API Testing with Small Language Models [50.058600784556816]
LlamaRestTestは、2つのカスタムLCMを使って現実的なテストインプットを生成する新しいアプローチである。
LlamaRestTestは、RESTGPTで強化された仕様でさえ、コードカバレッジとエラー検出において最先端のツールを上回っている。
論文 参考訳(メタデータ) (2025-01-15T05:51:20Z) - Your Fix Is My Exploit: Enabling Comprehensive DL Library API Fuzzing with Large Language Models [49.214291813478695]
AIアプリケーションで広く使用されているディープラーニング(DL)ライブラリは、オーバーフローやバッファフリーエラーなどの脆弱性を含むことが多い。
従来のファジィングはDLライブラリの複雑さとAPIの多様性に悩まされている。
DLライブラリのためのLLM駆動ファジィ手法であるDFUZZを提案する。
論文 参考訳(メタデータ) (2025-01-08T07:07:22Z) - APIRL: Deep Reinforcement Learning for REST API Fuzzing [3.053989095162017]
APIRLは、REST APIをテストするための、完全に自動化された深層強化学習ツールである。
APIRLは、現実世界のREST APIの最先端よりも、はるかに多くのバグを見つけることができます。
論文 参考訳(メタデータ) (2024-12-20T15:40:51Z) - ExploraCoder: Advancing code generation for multiple unseen APIs via planning and chained exploration [70.26807758443675]
ExploraCoderはトレーニング不要のフレームワークで、大規模な言語モデルにコードソリューションで見えないAPIを呼び出す権限を与える。
ExploraCoderは,事前のAPI知識を欠いたモデルのパフォーマンスを著しく向上させ,NAGアプローチの11.24%,pass@10の事前トレーニングメソッドの14.07%を絶対的に向上させることを示す。
論文 参考訳(メタデータ) (2024-12-06T19:00:15Z) - A Multi-Agent Approach for REST API Testing with Semantic Graphs and LLM-Driven Inputs [46.65963514391019]
私たちは、REST APIテストに依存性組み込みのマルチエージェントアプローチを採用する最初のブラックボックスツールであるAutoRestTestを紹介します。
このアプローチでは、REST APIテストを分離可能な問題として扱い、4人のエージェントがAPI探索を最適化するために協力します。
12の現実世界のRESTサービス上でのAutoRestTestの評価は、主要な4つのブラックボックスREST APIテストツールよりも優れています。
論文 参考訳(メタデータ) (2024-11-11T16:20:27Z) - DeepREST: Automated Test Case Generation for REST APIs Exploiting Deep Reinforcement Learning [5.756036843502232]
本稿では、REST APIを自動テストするための新しいブラックボックスアプローチであるDeepRESTを紹介します。
深い強化学習を活用して、暗黙のAPI制約、すなわちAPIドキュメントから隠された制約を明らかにする。
実験により,提案手法は高いテストカバレッジと故障検出を実現する上で極めて有効であることが示唆された。
論文 参考訳(メタデータ) (2024-08-16T08:03:55Z) - Adaptive REST API Testing with Reinforcement Learning [54.68542517176757]
現在のテストツールは効率的な探索機構がなく、全ての操作とパラメータを等しく扱う。
現在のツールは、仕様にレスポンススキーマがない場合や、変種を示す場合に苦労している。
我々は、強化学習を取り入れた適応型REST APIテスト手法を提案し、探索中の操作を優先順位付けする。
論文 参考訳(メタデータ) (2023-09-08T20:27:05Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
本稿では,隣接レベルからの機能を統合するためのアグリゲート・インタラクション・モジュールを提案する。
より効率的なマルチスケール機能を得るために、各デコーダユニットに自己相互作用モジュールを埋め込む。
5つのベンチマークデータセットによる実験結果から,提案手法は後処理を一切行わず,23の最先端手法に対して良好に動作することが示された。
論文 参考訳(メタデータ) (2020-07-17T15:41:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。