論文の概要: Dynamic Contrastive Learning for Time Series Representation
- arxiv url: http://arxiv.org/abs/2410.15416v1
- Date: Sun, 20 Oct 2024 15:20:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:17:32.304230
- Title: Dynamic Contrastive Learning for Time Series Representation
- Title(参考訳): 時系列表現のための動的コントラスト学習
- Authors: Abdul-Kazeem Shamba, Kerstin Bach, Gavin Taylor,
- Abstract要約: 時系列の教師なしコントラスト表現学習フレームワークDynaCLを提案する。
DynaCLは時系列から意味のあるクラスタにインスタンスを埋め込みます。
また、教師なしクラスタリングメトリクスの高得点は、下流タスクにおいて表現が有用であることを保証していないことも明らかにした。
- 参考スコア(独自算出の注目度): 6.086030037869592
- License:
- Abstract: Understanding events in time series is an important task in a variety of contexts. However, human analysis and labeling are expensive and time-consuming. Therefore, it is advantageous to learn embeddings for moments in time series in an unsupervised way, which allows for good performance in classification or detection tasks after later minimal human labeling. In this paper, we propose dynamic contrastive learning (DynaCL), an unsupervised contrastive representation learning framework for time series that uses temporal adjacent steps to define positive pairs. DynaCL adopts N-pair loss to dynamically treat all samples in a batch as positive or negative pairs, enabling efficient training and addressing the challenges of complicated sampling of positives. We demonstrate that DynaCL embeds instances from time series into semantically meaningful clusters, which allows superior performance on downstream tasks on a variety of public time series datasets. Our findings also reveal that high scores on unsupervised clustering metrics do not guarantee that the representations are useful in downstream tasks.
- Abstract(参考訳): 時系列におけるイベントを理解することは、さまざまな文脈において重要なタスクである。
しかし、人間の分析とラベル付けは高価で時間を要する。
したがって、時系列の埋め込みを教師なしの方法で学習することが有利であり、これにより、後続の最小限のラベル付けの後、分類や検出タスクにおいて優れた性能が得られる。
本稿では,時系列の非教師付きコントラスト表現学習フレームワークである動的コントラスト学習(DynaCL)を提案する。
DynaCLはNペア損失を採用し、全てのサンプルを正または負のペアとして動的に扱うことで、効率的なトレーニングを可能にし、複雑な正のサンプリングの課題に対処する。
我々は、DynaCLが時系列から意味のあるクラスタにインスタンスを埋め込むことを実証した。
また、教師なしクラスタリングメトリクスの高得点は、下流タスクにおいて表現が有用であることを保証していないことも明らかにした。
関連論文リスト
- Capturing Temporal Components for Time Series Classification [5.70772577110828]
本研究では,逐次データから抽出した統計的コヒーレントな成分に基づいて学習したテキスト合成表現学習手法を提案する。
マルチスケールな変更空間に基づいて、シーケンシャルデータを類似の統計特性を持つチャンクに分割する教師なしの手法を提案する。
シーケンスベースのエンコーダモデルをマルチタスク設定でトレーニングし、時系列分類のための時間成分から合成表現を学習する。
論文 参考訳(メタデータ) (2024-06-20T16:15:21Z) - Distillation Enhanced Time Series Forecasting Network with Momentum Contrastive Learning [7.4106801792345705]
長周期時系列予測のための革新的蒸留強化フレームワークであるDE-TSMCLを提案する。
具体的には、タイムスタンプをマスクするかどうかを適応的に学習する学習可能なデータ拡張機構を設計する。
そこで本研究では,時系列のサンプル間および時間内相関を探索するために,モーメントを更新したコントラスト学習タスクを提案する。
複数のタスクからモデル損失を発生させることで、下流予測タスクの効果的な表現を学習することができる。
論文 参考訳(メタデータ) (2024-01-31T12:52:10Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Multi-Task Self-Supervised Time-Series Representation Learning [3.31490164885582]
時系列表現学習は、時間的ダイナミクスとスパースラベルを持つデータから表現を抽出することができる。
自己教師型タスクの利点を組み合わせた時系列表現学習手法を提案する。
本稿では,時系列分類,予測,異常検出という3つのダウンストリームタスクの枠組みについて検討する。
論文 参考訳(メタデータ) (2023-03-02T07:44:06Z) - MHCCL: Masked Hierarchical Cluster-Wise Contrastive Learning for
Multivariate Time Series [20.008535430484475]
Masked Hierarchical Cluster-wise Contrastive Learning modelを示す。
時系列の複数の潜在パーティションからなる階層構造から得られる意味情報を利用する。
教師なし時系列表現学習における最先端の手法よりも優れていることが示されている。
論文 参考訳(メタデータ) (2022-12-02T12:42:53Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Unsupervised Representation Learning for Time Series with Temporal
Neighborhood Coding [8.45908939323268]
非定常時系列に対する一般化可能な表現を学習するための自己教師型フレームワークを提案する。
我々のモチベーションは、時系列データの動的性質をモデル化する能力が特に有用である医療分野に起因している。
論文 参考訳(メタデータ) (2021-06-01T19:53:24Z) - Interpretable Time-series Representation Learning With Multi-Level
Disentanglement [56.38489708031278]
Disentangle Time Series (DTS)は、シーケンシャルデータのための新しいDisentanglement Enhanceingフレームワークである。
DTSは時系列の解釈可能な表現として階層的意味概念を生成する。
DTSは、セマンティック概念の解釈性が高く、下流アプリケーションで優れたパフォーマンスを実現します。
論文 参考訳(メタデータ) (2021-05-17T22:02:24Z) - Contrastive learning of strong-mixing continuous-time stochastic
processes [53.82893653745542]
コントラスト学習(Contrastive Learning)は、ラベルのないデータから構築された分類タスクを解決するためにモデルを訓練する自己指導型の手法のファミリーである。
拡散の場合,小~中距離間隔の遷移カーネルを適切に構築したコントラスト学習タスクを用いて推定できることが示される。
論文 参考訳(メタデータ) (2021-03-03T23:06:47Z) - ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for
Semi-supervised Continual Learning [52.831894583501395]
連続学習は、入力されたデータが完全にラベル付けされていると仮定し、実際のアプリケーションでは適用できないかもしれない。
我々は、条件付き生成逆数ネットワーク(GAN)を用いた分類器を相互に学習するために、識別器整合(ORDisCo)を用いたディープオンライン再生を提案する。
ORDisCo が SSCL の様々な半教師付き学習ベンチマークデータセットで大幅なパフォーマンス向上を達成していることを示します。
論文 参考訳(メタデータ) (2021-01-02T09:04:14Z) - Contrastive Learning with Adversarial Examples [79.39156814887133]
コントラスト学習(Contrastive Learning, CL)は、視覚表現の自己教師型学習(SSL)において一般的な手法である。
本稿では,コンストラクティブ・ラーニングのための新しい逆例群を紹介し,これらの例を用いてCLAEと表記されるSSLの新しい逆トレーニングアルゴリズムを定義する。
論文 参考訳(メタデータ) (2020-10-22T20:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。