論文の概要: Unsupervised Representation Learning for Time Series with Temporal
Neighborhood Coding
- arxiv url: http://arxiv.org/abs/2106.00750v1
- Date: Tue, 1 Jun 2021 19:53:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-03 14:42:51.634415
- Title: Unsupervised Representation Learning for Time Series with Temporal
Neighborhood Coding
- Title(参考訳): 時間近傍符号化による時系列の教師なし表現学習
- Authors: Sana Tonekaboni, Danny Eytan, Anna Goldenberg
- Abstract要約: 非定常時系列に対する一般化可能な表現を学習するための自己教師型フレームワークを提案する。
我々のモチベーションは、時系列データの動的性質をモデル化する能力が特に有用である医療分野に起因している。
- 参考スコア(独自算出の注目度): 8.45908939323268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series are often complex and rich in information but sparsely labeled
and therefore challenging to model. In this paper, we propose a self-supervised
framework for learning generalizable representations for non-stationary time
series. Our approach, called Temporal Neighborhood Coding (TNC), takes
advantage of the local smoothness of a signal's generative process to define
neighborhoods in time with stationary properties. Using a debiased contrastive
objective, our framework learns time series representations by ensuring that in
the encoding space, the distribution of signals from within a neighborhood is
distinguishable from the distribution of non-neighboring signals. Our
motivation stems from the medical field, where the ability to model the dynamic
nature of time series data is especially valuable for identifying, tracking,
and predicting the underlying patients' latent states in settings where
labeling data is practically impossible. We compare our method to recently
developed unsupervised representation learning approaches and demonstrate
superior performance on clustering and classification tasks for multiple
datasets.
- Abstract(参考訳): 時系列はしばしば複雑で情報に富んでいるが、わずかにラベル付けされているためモデル化が難しい。
本稿では,非定常時系列の一般化表現を学習するための自己教師付きフレームワークを提案する。
我々の手法は、TNC(Temporal Neighborhood Coding)と呼ばれ、信号の生成過程の局所的滑らかさを利用して、定常特性のある近傍を定義する。
偏りのある対比目的を用いて, 符号化空間において, 近傍からの信号の分布と非隣接信号の分布を区別できることを保証することにより, 時系列表現を学習する。
我々のモチベーションは、時系列データのダイナミックな性質をモデル化する能力が、ラベル付けデータが事実上不可能な環境で患者の潜伏状態を特定し、追跡し、予測するのに特に有用である医療分野に起因している。
提案手法と最近開発された教師なし表現学習手法を比較し,クラスタリングおよび複数のデータセットの分類タスクにおける優れた性能を示す。
関連論文リスト
- Dynamic Contrastive Learning for Time Series Representation [6.086030037869592]
時系列の教師なしコントラスト表現学習フレームワークDynaCLを提案する。
DynaCLは時系列から意味のあるクラスタにインスタンスを埋め込みます。
また、教師なしクラスタリングメトリクスの高得点は、下流タスクにおいて表現が有用であることを保証していないことも明らかにした。
論文 参考訳(メタデータ) (2024-10-20T15:20:24Z) - Motion Code: Robust Time Series Classification and Forecasting via Sparse Variational Multi-Stochastic Processes Learning [3.2857981869020327]
本稿では,各時系列を連続的なプロセスの実現とみなす新しいフレームワークを提案する。
この数学的アプローチは、タイムスタンプ間の依存関係をキャプチャし、ノイズ内の隠れた時間変化信号を検出する。
現実のパーキンソン病センサートラッキングを含むノイズの多いデータセットの実験は、確立されたベンチマークに対するモーションコードの強力なパフォーマンスを実証している。
論文 参考訳(メタデータ) (2024-02-21T19:10:08Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Learning Time-aware Graph Structures for Spatially Correlated Time
Series Forecasting [30.93275270960829]
本稿では時系列間の時間認識相関を抽出する時間認識グラフ構造学習(TagSL)を提案する。
グラフ畳み込みに基づくGated Recurrent Unit (GCGRU) も提案する。
最後に,TagSLとGCGRUを組み合わせたTGCRN(Time-aware Graph Convolutional Recurrent Network)という統合フレームワークを導入し,マルチステップ時間予測のためのエンコーダデコーダアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-12-27T04:23:43Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
データ固有のリード-ラグ関係を発見することで、重要な洞察を得ることができる。
階層化多要素モデルにおけるリードラグ関係のロバスト検出のためのクラスタリング駆動手法を開発した。
論文 参考訳(メタデータ) (2023-05-11T10:30:35Z) - Contrastive Learning for Time Series on Dynamic Graphs [17.46524362769774]
本稿では,グラフと時系列の結合表現の教師なし学習のためのGraphTNCというフレームワークを提案する。
実世界のデータセットを用いた分類作業において有益であることを示す。
論文 参考訳(メタデータ) (2022-09-21T21:14:28Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - Learning to Reconstruct Missing Data from Spatiotemporal Graphs with
Sparse Observations [11.486068333583216]
本稿では、欠落したデータポイントを再構築するための効果的なモデル学習の課題に取り組む。
我々は,高度にスパースな観測値の集合を与えられた注意に基づくアーキテクチャのクラスを提案し,時間と空間における点の表現を学習する。
技術状況と比較して、我々のモデルは予測エラーを伝播したり、前方および後方の時間依存性をエンコードするために双方向モデルを必要とすることなくスパースデータを処理します。
論文 参考訳(メタデータ) (2022-05-26T16:40:48Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Contrastive learning of strong-mixing continuous-time stochastic
processes [53.82893653745542]
コントラスト学習(Contrastive Learning)は、ラベルのないデータから構築された分類タスクを解決するためにモデルを訓練する自己指導型の手法のファミリーである。
拡散の場合,小~中距離間隔の遷移カーネルを適切に構築したコントラスト学習タスクを用いて推定できることが示される。
論文 参考訳(メタデータ) (2021-03-03T23:06:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。