Accelerated Sub-Image Search For Variable-Size Patches Identification Based On Virtual Time Series Transformation And Segmentation
- URL: http://arxiv.org/abs/2410.15425v1
- Date: Sun, 20 Oct 2024 15:43:50 GMT
- Title: Accelerated Sub-Image Search For Variable-Size Patches Identification Based On Virtual Time Series Transformation And Segmentation
- Authors: Mogens Plessen,
- Abstract summary: This paper addresses two tasks: (i) fixed-size objects such as hay bales to be identified in an aerial image for a given reference image of the object, and (ii) variable-size patches such as areas on fields requiring spot spraying or other handling are to be identified in an image for a given small-scale reference image.
The exact number of similar sub-images is not known a priori.
- Score: 0.0
- License:
- Abstract: This paper addresses two tasks: (i) fixed-size objects such as hay bales are to be identified in an aerial image for a given reference image of the object, and (ii) variable-size patches such as areas on fields requiring spot spraying or other handling are to be identified in an image for a given small-scale reference image. Both tasks are related. The second differs in that identified sub-images similar to the reference image are further clustered before patches contours are determined by solving a traveling salesman problem. Both tasks are complex in that the exact number of similar sub-images is not known a priori. The main discussion of this paper is presentation of an acceleration mechanism for sub-image search that is based on a transformation of an image to multivariate time series along the RGB-channels and subsequent segmentation to reduce the 2D search space in the image. Two variations of the acceleration mechanism are compared to exhaustive search on diverse synthetic and real-world images. Quantitatively, proposed method results in solve time reductions of up to 2 orders of magnitude, while qualitatively delivering comparative visual results. Proposed method is neural network-free and does not use any image pre-processing.
Related papers
- Depth-aware Panoptic Segmentation [1.4170154234094008]
We present a novel CNN-based method for panoptic segmentation.
We propose a new depth-aware dice loss term which penalises the assignment of pixels to the same thing instance.
Experiments carried out on the Cityscapes dataset show that the proposed method reduces the number of objects that are erroneously merged into one thing instance.
arXiv Detail & Related papers (2024-03-21T08:06:49Z) - Learning to search for and detect objects in foveal images using deep
learning [3.655021726150368]
This study employs a fixation prediction model that emulates human objective-guided attention of searching for a given class in an image.
The foveated pictures at each fixation point are then classified to determine whether the target is present or absent in the scene.
We present a novel dual task model capable of performing fixation prediction and detection simultaneously, allowing knowledge transfer between the two tasks.
arXiv Detail & Related papers (2023-04-12T09:50:25Z) - Shrinking the Semantic Gap: Spatial Pooling of Local Moment Invariants
for Copy-Move Forgery Detection [7.460203098159187]
Copy-move forgery is a manipulation of copying and pasting specific patches from and to an image, with potentially illegal or unethical uses.
Recent advances in the forensic methods for copy-move forgery have shown increasing success in detection accuracy and robustness.
For images with high self-similarity or strong signal corruption, the existing algorithms often exhibit inefficient processes and unreliable results.
arXiv Detail & Related papers (2022-07-19T09:11:43Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-net is a new low-computation two-stage object detection architecture.
It reduces computations by separating objects from background using a very lite first-stage.
Resulting image proposals are then processed in the second-stage by a highly accurate model.
arXiv Detail & Related papers (2021-07-21T12:39:51Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z) - Image Matching with Scale Adjustment [57.18604132027697]
We show how to represent and extract interest points at variable scales.
We devise a method allowing the comparison of two images at two different resolutions.
arXiv Detail & Related papers (2020-12-10T11:03:25Z) - Augmented Equivariant Attention Networks for Microscopy Image
Reconstruction [44.965820245167635]
It is time-consuming and expensive to take high-quality or high-resolution electron microscopy (EM) and fluorescence microscopy (FM) images.
Deep learning enables us to perform image-to-image transformation tasks for various types of microscopy image reconstruction.
We propose the augmented equivariant attention networks (AEANets) with better capability to capture inter-image dependencies.
arXiv Detail & Related papers (2020-11-06T23:37:49Z) - Tasks Integrated Networks: Joint Detection and Retrieval for Image
Search [99.49021025124405]
In many real-world searching scenarios (e.g., video surveillance), the objects are seldom accurately detected or annotated.
We first introduce an end-to-end Integrated Net (I-Net), which has three merits.
We further propose an improved I-Net, called DC-I-Net, which makes two new contributions.
arXiv Detail & Related papers (2020-09-03T03:57:50Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Rethinking of the Image Salient Object Detection: Object-level Semantic
Saliency Re-ranking First, Pixel-wise Saliency Refinement Latter [62.26677215668959]
We propose a lightweight, weakly supervised deep network to coarsely locate semantically salient regions.
We then fuse multiple off-the-shelf deep models on these semantically salient regions as the pixel-wise saliency refinement.
Our method is simple yet effective, which is the first attempt to consider the salient object detection mainly as an object-level semantic re-ranking problem.
arXiv Detail & Related papers (2020-08-10T07:12:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.