論文の概要: Structural Causality-based Generalizable Concept Discovery Models
- arxiv url: http://arxiv.org/abs/2410.15491v1
- Date: Sun, 20 Oct 2024 20:09:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:16:16.537633
- Title: Structural Causality-based Generalizable Concept Discovery Models
- Title(参考訳): 構造因果性に基づく一般化可能な概念発見モデル
- Authors: Sanchit Sinha, Guangzhi Xiong, Aidong Zhang,
- Abstract要約: 本稿では,変動オートエンコーダ(VAE)を用いて,与えられたデータセットに対して相互独立な生成因子を学習するためのアンタングル機構を提案する。
本手法は,生成因子から概念への因果関係を指向した2部グラフを形成するために生成因子と概念を仮定する。
提案手法は, 特定の下流タスクにおいて, 因果的要因からよく説明されるタスク固有の概念をうまく学習する。
- 参考スコア(独自算出の注目度): 29.932706137805713
- License:
- Abstract: The rising need for explainable deep neural network architectures has utilized semantic concepts as explainable units. Several approaches utilizing disentangled representation learning estimate the generative factors and utilize them as concepts for explaining DNNs. However, even though the generative factors for a dataset remain fixed, concepts are not fixed entities and vary based on downstream tasks. In this paper, we propose a disentanglement mechanism utilizing a variational autoencoder (VAE) for learning mutually independent generative factors for a given dataset and subsequently learning task-specific concepts using a structural causal model (SCM). Our method assumes generative factors and concepts to form a bipartite graph, with directed causal edges from generative factors to concepts. Experiments are conducted on datasets with known generative factors: D-sprites and Shapes3D. On specific downstream tasks, our proposed method successfully learns task-specific concepts which are explained well by the causal edges from the generative factors. Lastly, separate from current causal concept discovery methods, our methodology is generalizable to an arbitrary number of concepts and flexible to any downstream tasks.
- Abstract(参考訳): 説明可能なディープニューラルネットワークアーキテクチャの必要性が高まっているため、意味論的概念を説明可能な単位として利用している。
不整合表現学習を利用するいくつかのアプローチは、生成因子を推定し、それらをDNNを説明するための概念として利用する。
しかし、データセットの生成要因は固定されているものの、概念は固定エンティティではなく、下流タスクによって異なる。
本稿では,あるデータセットに対して相互独立な生成因子を学習し,その後,構造因果モデル(SCM)を用いてタスク固有の概念を学習するために,変分オートエンコーダ(VAE)を利用したアンタングル機構を提案する。
提案手法は,生成因子から概念への因果関係を指向した2部グラフを生成要因と概念とみなす。
D-spritesとShapes3Dという、既知の生成因子を持つデータセット上で実験を行う。
提案手法は, 特定の下流タスクにおいて, 因果的要因からよく説明されるタスク固有の概念をうまく学習する。
最後に、現在の因果概念発見法とは別に、我々の方法論は任意の数の概念に一般化可能であり、下流のタスクにも柔軟である。
関連論文リスト
- CoLiDR: Concept Learning using Aggregated Disentangled Representations [29.932706137805713]
概念に基づくモデルを用いたディープニューラルネットワークの解釈可能性は、人間の理解可能な概念を通じてモデルの振る舞いを説明する有望な方法を提供する。
並列的な研究は、データ分散をその基盤となる生成因子に切り離し、データ生成プロセスを説明することに重点を置いている。
どちらの方向も広く注目されているが、数学的に不整合な表現と人間の理解可能な概念を統一するための生成的要因の観点から概念を説明する研究はほとんど行われていない。
論文 参考訳(メタデータ) (2024-07-27T16:55:14Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
ディープニューラルネットワークの「ブラックボックス」問題に対処するために、概念ボトルネックモデル(CBM)が提案されている。
本稿では,典型的なパラダイムを逆転させる新しいCBMアプローチであるDiscover-then-Name-CBM(DN-CBM)を提案する。
我々の概念抽出戦略は、下流のタスクに非依存であり、既にそのモデルに知られている概念を使用するため、効率的である。
論文 参考訳(メタデータ) (2024-07-19T17:50:11Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
自然の高次元データから学習する概念は、ヒューマンアライメントと解釈可能な機械学習モデルの構築の可能性を秘めている。
我々は概念を階層的因果モデルを通して関連付けられた離散潜在因果変数として定式化する。
我々は、理論的な主張を合成データ実験で裏付ける。
論文 参考訳(メタデータ) (2024-06-01T18:01:03Z) - Explaining Explainability: Understanding Concept Activation Vectors [35.37586279472797]
最近の解釈可能性法では、概念に基づく説明を用いて、ディープラーニングモデルの内部表現を、人間が慣れ親しんだ言語に翻訳する。
これは、ニューラルネットワークの表現空間にどの概念が存在するかを理解する必要がある。
本研究では,概念活性化ベクトル(Concept Activation Vectors, CAV)の3つの特性について検討する。
本研究では,これらの特性の存在を検出するためのツールを導入し,それらが引き起こした説明にどのように影響するかを把握し,その影響を最小限に抑えるための推奨事項を提供する。
論文 参考訳(メタデータ) (2024-04-04T17:46:20Z) - Attributing Learned Concepts in Neural Networks to Training Data [5.930268338525991]
コンバージェンス(収束)の証拠として,概念の上位1万個の画像を取り除き,モデルの再トレーニングを行うと,ネットワーク内の概念の位置が変化しない。
このことは、概念の発達を知らせる特徴が、概念形成の堅牢さを暗示して、その先例にまたがるより拡散した方法で広がることを示唆している。
論文 参考訳(メタデータ) (2023-10-04T20:26:59Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
本稿では,複雑な感覚データから階層構造を生成するための記号のみの手法を提案する。
このアプローチは、概念や概念の創始の鍵としてのバテソンの差異の概念に基づいている。
このモデルは、トレーニングなしでかなりリッチだが人間に読まれる概念表現を生成することができる。
論文 参考訳(メタデータ) (2023-07-16T15:59:13Z) - Uncovering Unique Concept Vectors through Latent Space Decomposition [0.0]
概念に基づく説明は、特徴帰属推定よりも解釈可能な優れたアプローチとして現れてきた。
本稿では,訓練中に深層モデルから学んだ概念を自動的に発見するポストホックな教師なし手法を提案する。
実験の結果、我々の概念の大部分は、人間にとって容易に理解でき、一貫性を示し、目の前の課題に関連があることが判明した。
論文 参考訳(メタデータ) (2023-07-13T17:21:54Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
概念活性化ベクトル(Concept Activation Vectors, CAV)のクラスを含む概念的説明を紹介する。
次に、自動的に概念を抽出するアプローチと、それらの注意事項に対処するアプローチについて議論する。
最後に、このような概念に基づく説明が、合成設定や実世界の応用において有用であることを示すケーススタディについて論じる。
論文 参考訳(メタデータ) (2022-02-25T01:27:31Z) - Translational Concept Embedding for Generalized Compositional Zero-shot
Learning [73.60639796305415]
一般合成ゼロショット学習は、ゼロショット方式で属性オブジェクト対の合成概念を学習する手段である。
本稿では,これら2つの課題を統一的なフレームワークで解決するために,翻訳概念の埋め込み(translational concept embedded)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-12-20T21:27:51Z) - Cause and Effect: Concept-based Explanation of Neural Networks [3.883460584034766]
ニューロンの内部表現や概念に対するニューロンの活性化を調べることで、ニューラルネットワークの解釈可能性の一歩を踏み出します。
概念(またはその否定)とタスククラスの間の因果関係の存在を確認するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-14T18:54:17Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
本研究では,人間の解釈可能な概念次元に沿って学習することで,一般化能力を向上させるメタ学習手法であるCOMETを提案する。
我々は,細粒度画像分類,文書分類,セルタイプアノテーションなど,さまざまな領域からの少数ショットタスクによるモデルの評価を行った。
論文 参考訳(メタデータ) (2020-07-14T22:04:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。