ZK-DPPS: A Zero-Knowledge Decentralised Data Sharing and Processing Middleware
- URL: http://arxiv.org/abs/2410.15568v1
- Date: Mon, 21 Oct 2024 01:23:37 GMT
- Title: ZK-DPPS: A Zero-Knowledge Decentralised Data Sharing and Processing Middleware
- Authors: Amir Jabbari, Gowri Ramachandran, Sidra Malik, Raja Jurdak,
- Abstract summary: We propose ZK-DPPS, a framework that ensures zero-knowledge communications without the need for traditional ZKPs.
Privacy is preserved through a combination of Fully Homomorphic Encryption (FHE) for computations and Secure Multi-Party Computations (SMPC) for key reconstruction.
We demonstrate the efficacy of ZK-DPPS through a simulated supply chain scenario.
- Score: 3.2995127573095484
- License:
- Abstract: In the current digital landscape, supply chains have transformed into complex networks driven by the Internet of Things (IoT), necessitating enhanced data sharing and processing capabilities to ensure traceability and transparency. Leveraging Blockchain technology in IoT applications advances reliability and transparency in near-real-time insight extraction processes. However, it raises significant concerns regarding data privacy. Existing privacy-preserving approaches often rely on Smart Contracts for automation and Zero Knowledge Proofs (ZKP) for privacy. However, apart from being inflexible in adopting system changes while effectively protecting data confidentiality, these approaches introduce significant computational expenses and overheads that make them impractical for dynamic supply chain environments. To address these challenges, we propose ZK-DPPS, a framework that ensures zero-knowledge communications without the need for traditional ZKPs. In ZK-DPPS, privacy is preserved through a combination of Fully Homomorphic Encryption (FHE) for computations and Secure Multi-Party Computations (SMPC) for key reconstruction. To ensure that the raw data remains private throughout the entire process, we use FHE to execute computations directly on encrypted data. The "zero-knowledge" aspect of ZK-DPPS refers to the system's ability to process and share data insights without exposing sensitive information, thus offering a practical and efficient alternative to ZKP-based methods. We demonstrate the efficacy of ZK-DPPS through a simulated supply chain scenario, showcasing its ability to tackle the dual challenges of privacy preservation and computational trust in decentralised environments.
Related papers
- FL-DABE-BC: A Privacy-Enhanced, Decentralized Authentication, and Secure Communication for Federated Learning Framework with Decentralized Attribute-Based Encryption and Blockchain for IoT Scenarios [0.0]
This study proposes an advanced Learning (FL) framework designed to enhance data privacy and security in IoT environments.
We integrate Decentralized Attribute-Based Encryption (DABE), Homomorphic Encryption (HE), Secure Multi-Party Computation (SMPC) and technology.
Unlike traditional FL, our framework enables secure, decentralized authentication and encryption directly on IoT devices.
arXiv Detail & Related papers (2024-10-26T19:30:53Z) - Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
Collaborative inference among multiple wireless edge devices has the potential to significantly enhance Artificial Intelligence (AI) applications.
transmitting extracted features poses a significant privacy risk, as sensitive personal data can be exposed during the process.
We propose a novel privacy-preserving collaborative inference mechanism, wherein each edge device in the network secures the privacy of extracted features before transmitting them to a central server for inference.
arXiv Detail & Related papers (2024-10-25T18:11:02Z) - A Survey on the Applications of Zero-Knowledge Proofs [4.3871352596331255]
Zero-knowledge computation (ZKPs) represent a revolutionary advance in computational integrity and privacy technology.
ZKPs have unique advantages in terms of universality and minimal security assumptions.
This survey focuses on the subset of ZKPs called zk-SNARKS.
arXiv Detail & Related papers (2024-08-01T02:47:30Z) - Homomorphic Encryption-Enabled Federated Learning for Privacy-Preserving Intrusion Detection in Resource-Constrained IoV Networks [20.864048794953664]
This paper proposes a novel framework to address the data privacy issue for Federated Learning (FL)-based Intrusion Detection Systems (IDSs) in Internet-of-Vehicles (IoVs) with limited computational resources.
We first propose a highly-effective framework using homomorphic encryption to secure data that requires offloading to a centralized server for processing.
We develop an effective training algorithm tailored to handle the challenges of FL-based systems with encrypted data.
arXiv Detail & Related papers (2024-07-26T04:19:37Z) - Provable Privacy with Non-Private Pre-Processing [56.770023668379615]
We propose a general framework to evaluate the additional privacy cost incurred by non-private data-dependent pre-processing algorithms.
Our framework establishes upper bounds on the overall privacy guarantees by utilising two new technical notions.
arXiv Detail & Related papers (2024-03-19T17:54:49Z) - Libertas: Privacy-Preserving Computation for Decentralised Personal Data Stores [19.54818218429241]
We propose a modular design for integrating Secure Multi-Party Computation with Solid.
Our architecture, Libertas, requires no protocol level changes in the underlying design of Solid.
We show how this can be combined with existing differential privacy techniques to also ensure output privacy.
arXiv Detail & Related papers (2023-09-28T12:07:40Z) - Deploying ZKP Frameworks with Real-World Data: Challenges and Proposed
Solutions [0.5584060970507506]
We present Fact Fortress, an end-to-end framework for designing and deploying zero-knowledge proofs of general statements.
Our solution leverages proofs of data provenance and auditable data access policies to ensure the trustworthiness of how sensitive data is handled.
arXiv Detail & Related papers (2023-07-12T18:53:42Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
We investigate the privacy-preserving joint edge association and power allocation problem.
The proposed solution strikes a compelling trade-off, while preserving a higher privacy level than the state-of-the-art solutions.
arXiv Detail & Related papers (2023-01-26T10:09:23Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
A privacy-preserving distributed deep policy gradient (P2D3PG) is proposed to maximize the cache hit rates of devices in the MEC networks.
We convert the distributed optimizations into model-free Markov decision process problems and then introduce a privacy-preserving federated learning method for popularity prediction.
arXiv Detail & Related papers (2021-10-20T02:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.