A Comprehensive Comparative Study of Individual ML Models and Ensemble Strategies for Network Intrusion Detection Systems
- URL: http://arxiv.org/abs/2410.15597v1
- Date: Mon, 21 Oct 2024 02:44:58 GMT
- Title: A Comprehensive Comparative Study of Individual ML Models and Ensemble Strategies for Network Intrusion Detection Systems
- Authors: Ismail Bibers, Osvaldo Arreche, Mustafa Abdallah,
- Abstract summary: We introduce an ensemble learning framework tailored for assessing individual models and ensemble methods in network intrusion detection tasks.
Our framework encompasses the loading of input datasets, training of individual models and ensemble methods, and the generation of evaluation metrics.
- Score: 1.1587112467663427
- License:
- Abstract: The escalating frequency of intrusions in networked systems has spurred the exploration of new research avenues in devising artificial intelligence (AI) techniques for intrusion detection systems (IDS). Various AI techniques have been used to automate network intrusion detection tasks, yet each model possesses distinct strengths and weaknesses. Selecting the optimal model for a given dataset can pose a challenge, necessitating the exploration of ensemble methods to enhance generalization and applicability in network intrusion detection. This paper addresses this gap by conducting a comprehensive evaluation of diverse individual models and both simple and advanced ensemble methods for network IDS. We introduce an ensemble learning framework tailored for assessing individual models and ensemble methods in network intrusion detection tasks. Our framework encompasses the loading of input datasets, training of individual models and ensemble methods, and the generation of evaluation metrics. Furthermore, we incorporate all features across individual models and ensemble techniques. The study presents results for our framework, encompassing 14 methods, including various bagging, stacking, blending, and boosting techniques applied to multiple base learners such as decision trees, neural networks, and among others. We evaluate the framework using two distinct network intrusion datasets, RoEduNet-SIMARGL2021 and CICIDS-2017, each possessing unique characteristics. Additionally, we categorize AI models based on their performances on our evaluation metrics and via their confusion matrices. Our assessment demonstrates the efficacy of learning across most setups explored in this study. Furthermore, we contribute to the community by releasing our source codes, providing a foundational ensemble learning framework for network intrusion detection.
Related papers
- Enhanced Anomaly Detection in Industrial Control Systems aided by Machine Learning [2.2457306746668766]
This study investigates whether combining both network and process data can improve attack detection in ICSs environments.
Our findings suggest that integrating network traffic with operational process data can enhance detection capabilities.
Although the results are promising, they are preliminary and highlight the need for further studies.
arXiv Detail & Related papers (2024-10-25T17:41:33Z) - Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
In this paper, we employ a Reinforcement Learning framework to simulate the cognitive processes of humans.
We also deploy a Member-to-Leader Multi-Agent framework to extract and fuse features from multi-modal information.
We demonstrate the performance of our approach in both the 3D and 2D domains by employing the OS-MN40, OS-MN40-Miss, and Cifar10 datasets.
arXiv Detail & Related papers (2023-08-26T07:55:32Z) - Deep Q-Learning based Reinforcement Learning Approach for Network
Intrusion Detection [1.7205106391379026]
We introduce a new generation of network intrusion detection methods that combines a Q-learning-based reinforcement learning with a deep-feed forward neural network method for network intrusion detection.
Our proposed Deep Q-Learning (DQL) model provides an ongoing auto-learning capability for a network environment.
Our experimental results show that our proposed DQL is highly effective in detecting different intrusion classes and outperforms other similar machine learning approaches.
arXiv Detail & Related papers (2021-11-27T20:18:00Z) - Learning to Detect: A Data-driven Approach for Network Intrusion
Detection [17.288512506016612]
We perform a comprehensive study on NSL-KDD, a network traffic dataset, by visualizing patterns and employing different learning-based models to detect cyber attacks.
Unlike previous shallow learning and deep learning models that use the single learning model approach for intrusion detection, we adopt a hierarchy strategy.
We demonstrate the advantage of the unsupervised representation learning model in binary intrusion detection tasks.
arXiv Detail & Related papers (2021-08-18T21:19:26Z) - An Explainable Machine Learning-based Network Intrusion Detection System
for Enabling Generalisability in Securing IoT Networks [0.0]
Machine Learning (ML)-based network intrusion detection systems bring many benefits for enhancing the security posture of an organisation.
Many systems have been designed and developed in the research community, often achieving a perfect detection rate when evaluated using certain datasets.
This paper tightens the gap by evaluating the generalisability of a common feature set to different network environments and attack types.
arXiv Detail & Related papers (2021-04-15T00:44:45Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Model-Based Machine Learning for Communications [110.47840878388453]
We review existing strategies for combining model-based algorithms and machine learning from a high level perspective.
We focus on symbol detection, which is one of the fundamental tasks of communication receivers.
arXiv Detail & Related papers (2021-01-12T19:55:34Z) - A Survey of Community Detection Approaches: From Statistical Modeling to
Deep Learning [95.27249880156256]
We develop and present a unified architecture of network community-finding methods.
We introduce a new taxonomy that divides the existing methods into two categories, namely probabilistic graphical model and deep learning.
We conclude with discussions of the challenges of the field and suggestions of possible directions for future research.
arXiv Detail & Related papers (2021-01-03T02:32:45Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
democratized learning (Dem-AI) lays out a holistic philosophy with underlying principles for building large-scale distributed and democratized machine learning systems.
Inspired by Dem-AI philosophy, a novel distributed learning approach is proposed in this paper.
The proposed algorithms demonstrate better results in the generalization performance of learning models in agents compared to the conventional FL algorithms.
arXiv Detail & Related papers (2020-07-07T08:34:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.