論文の概要: LucidFusion: Reconstructing 3D Gaussians with Arbitrary Unposed Images
- arxiv url: http://arxiv.org/abs/2410.15636v3
- Date: Sat, 08 Mar 2025 12:50:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:41:13.950026
- Title: LucidFusion: Reconstructing 3D Gaussians with Arbitrary Unposed Images
- Title(参考訳): LucidFusion: 任意画像で3Dガウスを再構築
- Authors: Hao He, Yixun Liang, Luozhou Wang, Yuanhao Cai, Xinli Xu, Hao-Xiang Guo, Xiang Wen, Yingcong Chen,
- Abstract要約: 3次元再構成を画像から画像への変換として再構成し、相対座標マップ(RCM)を導入する。
RCMは、ポーズ推定なしで複数の未提示画像をメインビューにアライメントする。
RCMはプロセスを単純化するが、グローバルな3D監視の欠如によりノイズの多い出力が得られる。
我々のLucidFusionフレームワークは、任意の数の未用意な入力を処理し、数秒で堅牢な3D再構成を実現し、より柔軟でポーズなしの3Dパイプラインを実現する。
- 参考スコア(独自算出の注目度): 23.96972213606037
- License:
- Abstract: Recent large reconstruction models have made notable progress in generating high-quality 3D objects from single images. However, current reconstruction methods often rely on explicit camera pose estimation or fixed viewpoints, restricting their flexibility and practical applicability. We reformulate 3D reconstruction as image-to-image translation and introduce the Relative Coordinate Map (RCM), which aligns multiple unposed images to a main view without pose estimation. While RCM simplifies the process, its lack of global 3D supervision can yield noisy outputs. To address this, we propose Relative Coordinate Gaussians (RCG) as an extension to RCM, which treats each pixel's coordinates as a Gaussian center and employs differentiable rasterization for consistent geometry and pose recovery. Our LucidFusion framework handles an arbitrary number of unposed inputs, producing robust 3D reconstructions within seconds and paving the way for more flexible, pose-free 3D pipelines.
- Abstract(参考訳): 近年の大規模な再構成モデルでは, 単一画像から高品質な3Dオブジェクトの生成が顕著に進んでいる。
しかし、現在の再建法は、しばしばカメラポーズの明確な推定や固定された視点に依存し、その柔軟性と実用性を制限する。
我々は3次元再構成を画像から画像への変換として再構成し、ポーズ推定なしで複数の未表示画像をメインビューに整列する相対座標マップ(RCM)を導入する。
RCMはプロセスを単純化するが、グローバルな3D監視の欠如によりノイズの多い出力が得られる。
そこで我々は,RCMの拡張として相対座標ガウス(RCG)を提案し,各画素の座標をガウス中心として扱い,一貫した幾何とポーズの復元に微分ラスタライズを用いる。
我々のLucidFusionフレームワークは、任意の数の未用意な入力を処理し、数秒で堅牢な3D再構成を実現し、より柔軟でポーズなしの3Dパイプラインを実現する。
関連論文リスト
- F3D-Gaus: Feed-forward 3D-aware Generation on ImageNet with Cycle-Consistent Gaussian Splatting [35.625593119642424]
本稿では,モノケプラーデータセットから3次元認識を一般化する問題に取り組む。
画素整列型ガウススプラッティングに基づく新しいフィードフォワードパイプラインを提案する。
また、学習した3D表現において、クロスビューの一貫性を強制するために、自己教師付きサイクル一貫性制約を導入する。
論文 参考訳(メタデータ) (2025-01-12T04:44:44Z) - UniG: Modelling Unitary 3D Gaussians for View-consistent 3D Reconstruction [20.089890859122168]
ビュー一貫性を持つ3次元再構成と新しいビュー合成モデルUniGを提案する。
UniGはスパース画像から3Dガウスの高忠実度表現を生成する。
論文 参考訳(メタデータ) (2024-10-17T03:48:02Z) - Hi3D: Pursuing High-Resolution Image-to-3D Generation with Video Diffusion Models [112.2625368640425]
High- resolution Image-to-3D model (Hi3D) はビデオ拡散に基づく新しいパラダイムであり、単一の画像を3D対応シーケンシャル画像生成としてマルチビュー画像に再定義する。
Hi3Dは事前に学習した映像拡散モデルを3D対応で強化し、低解像度のテクスチャディテールを持つマルチビュー画像を生成する。
論文 参考訳(メタデータ) (2024-09-11T17:58:57Z) - GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
GeoLRM(Geometry-Aware Large Restruction Model)は、512kガウスと21の入力画像で11GBのGPUメモリで高品質な資産を予測できる手法である。
従来の作品では、3D構造の本質的な空間性は無視されており、3D画像と2D画像の間の明示的な幾何学的関係は利用されていない。
GeoLRMは、3Dポイントを直接処理し、変形可能なクロスアテンション機構を使用する新しい3D対応トランスフォーマー構造を導入することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2024-06-21T17:49:31Z) - Unique3D: High-Quality and Efficient 3D Mesh Generation from a Single Image [28.759158325097093]
Unique3Dは、シングルビュー画像から高品質な3Dメッシュを効率的に生成するための、新しい画像間3Dフレームワークである。
我々のフレームワークは、最先端世代の忠実さと強力な一般化性を備えている。
論文 参考訳(メタデータ) (2024-05-30T17:59:54Z) - AGG: Amortized Generative 3D Gaussians for Single Image to 3D [108.38567665695027]
Amortized Generative 3D Gaussian framework (AGG) を導入する。
AGGは、共同最適化のための3Dガウス位置およびその他の外観特性の生成を分解する。
本稿では,まず3次元データの粗い表現を生成し,後に3次元ガウス超解像モジュールでアップサンプリングするカスケードパイプラインを提案する。
論文 参考訳(メタデータ) (2024-01-08T18:56:33Z) - DMV3D: Denoising Multi-View Diffusion using 3D Large Reconstruction
Model [86.37536249046943]
textbfDMV3Dはトランスフォーマーに基づく3次元大規模再構成モデルを用いた新しい3D生成手法である。
再構成モデルでは, 3面のNeRF表現を組み込んで, ノイズの多い多視点画像をNeRF再構成とレンダリングで識別することができる。
論文 参考訳(メタデータ) (2023-11-15T18:58:41Z) - HoloFusion: Towards Photo-realistic 3D Generative Modeling [77.03830223281787]
拡散に基づく画像生成装置は、高品質で多様なサンプルを作成できるようになったが、その成功はまだ3D生成に完全に変換されていない。
提案するHoloFusionは,高忠実度,高可塑性,多種多様な3Dサンプルを作成するために,これらのアプローチを最大限に組み合わせた手法である。
論文 参考訳(メタデータ) (2023-08-28T01:19:33Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
フォトリアリスティック・ノベルビューを合成可能な高忠実度3次元生成対向ネットワーク(GAN)インバージョン・フレームワークを提案する。
提案手法は,1枚の画像から高忠実度3Dレンダリングを可能にし,AI生成3Dコンテンツの様々な応用に期待できる。
論文 参考訳(メタデータ) (2022-11-28T18:59:52Z) - GRAM-HD: 3D-Consistent Image Generation at High Resolution with
Generative Radiance Manifolds [28.660893916203747]
本稿では,ボリュームレンダリングのように厳密な3D一貫性を維持しつつ,高解像度画像(最大1024×1024)を生成できる新しい3D対応GANを提案する。
私たちのモチベーションは、3Dの一貫性を維持するために、3D空間で直接超解像度を達成することです。
FFHQおよびAFHQv2データセットを用いた実験により,本手法は高品質な3D一貫性のある結果が得られることが示された。
論文 参考訳(メタデータ) (2022-06-15T02:35:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。