論文の概要: Boosting Jailbreak Transferability for Large Language Models
- arxiv url: http://arxiv.org/abs/2410.15645v2
- Date: Sun, 03 Nov 2024 12:22:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:40:58.378258
- Title: Boosting Jailbreak Transferability for Large Language Models
- Title(参考訳): 大規模言語モデルのジェイルブレイク転送性向上
- Authors: Hanqing Liu, Lifeng Zhou, Huanqian Yan,
- Abstract要約: 不整合出力を削減するために,シナリオ誘導テンプレート,最適化された接尾辞選択,および再接尾辞攻撃機構の統合を提案する。
提案手法は,様々なベンチマーク実験において優れた性能を示し,攻撃実行と転送可能性の両方において100%近い成功率を達成した。
- 参考スコア(独自算出の注目度): 10.884050438726215
- License:
- Abstract: Large language models have drawn significant attention to the challenge of safe alignment, especially regarding jailbreak attacks that circumvent security measures to produce harmful content. To address the limitations of existing methods like GCG, which perform well in single-model attacks but lack transferability, we propose several enhancements, including a scenario induction template, optimized suffix selection, and the integration of re-suffix attack mechanism to reduce inconsistent outputs. Our approach has shown superior performance in extensive experiments across various benchmarks, achieving nearly 100% success rates in both attack execution and transferability. Notably, our method has won the first place in the AISG-hosted Global Challenge for Safe and Secure LLMs. The code is released at https://github.com/HqingLiu/SI-GCG.
- Abstract(参考訳): 大規模な言語モデルは、特に有害なコンテンツを生み出すためのセキュリティ対策を回避するジェイルブレイク攻撃に関して、安全なアライメントの課題に大きな注目を集めている。
単一モデル攻撃でよく機能するGCGのような既存手法の限界に対処するために,シナリオ誘導テンプレート,最適化された接尾辞選択,一貫性のない出力を減らすための再接尾辞攻撃機構の統合など,いくつかの拡張を提案する。
提案手法は,様々なベンチマーク実験において優れた性能を示し,攻撃実行と転送可能性の両方において100%近い成功率を達成した。
AISGが主催するGlobal Challenge for Safe and Secure LLMsで優勝した。
コードはhttps://github.com/HqingLiu/SI-GCGで公開されている。
関連論文リスト
- A Realistic Threat Model for Large Language Model Jailbreaks [87.64278063236847]
本研究では,ジェイルブレイク攻撃の原理的比較のための統一的脅威モデルを提案する。
私たちの脅威モデルは、パープレキシティの制約を組み合わせることで、ジェイルブレイクが自然のテキストからどれだけ逸脱するかを測定します。
我々は、この新しい現実的な脅威モデルに人気のある攻撃を適用する。
論文 参考訳(メタデータ) (2024-10-21T17:27:01Z) - Faster-GCG: Efficient Discrete Optimization Jailbreak Attacks against Aligned Large Language Models [16.938267820586024]
本稿では,GCGの設計を深く掘り下げて,効率の良い逆ジェイルブレイク法であるFaster-GCGを提案する。
実験により、高速GCGは計算コストのたった1/10で元のGCGを超えることができることが示された。
論文 参考訳(メタデータ) (2024-10-20T11:27:41Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
そこで本稿では, ガーブレッドの逆数プロンプトを, 一貫性のある, 可読性のある自然言語の逆数プロンプトに"翻訳"する手法を提案する。
また、jailbreakプロンプトの効果的な設計を発見し、jailbreak攻撃の理解を深めるための新しいアプローチも提供する。
本稿では,AdvBench上でのLlama-2-Chatモデルに対する攻撃成功率は90%以上である。
論文 参考訳(メタデータ) (2024-10-15T06:31:04Z) - Harnessing Task Overload for Scalable Jailbreak Attacks on Large Language Models [8.024771725860127]
大きな言語モデル(LLM)は、安全メカニズムをバイパスするジェイルブレイク攻撃に対して脆弱なままである。
我々は, LLMの安全性ポリシーの活性化を前提として, 計算資源を占有する新しい拡張性のあるジェイルブレイク攻撃を導入する。
論文 参考訳(メタデータ) (2024-10-05T15:10:01Z) - AdaPPA: Adaptive Position Pre-Fill Jailbreak Attack Approach Targeting LLMs [34.221522224051846]
大規模言語モデル(LLM)に対するジェイルブレイク攻撃を適応的に行うための適応的位置補充型ジェイルブレイク攻撃手法を提案する。
提案手法は,提案モデルの命令追従能力を利用して,まず安全なコンテンツを出力し,次にその物語シフト能力を利用して有害なコンテンツを生成する。
本手法は,従来の手法と比較して,広く認識されているセキュアモデル(Llama2)において,攻撃成功率を47%向上させることができる。
論文 参考訳(メタデータ) (2024-09-11T00:00:58Z) - Advancing Generalized Transfer Attack with Initialization Derived Bilevel Optimization and Dynamic Sequence Truncation [49.480978190805125]
転送攻撃はブラックボックスアプリケーションに大きな関心を惹きつける。
既存の作業は、本質的に単一のレベルの目的 w.r.t. シュロゲートモデルを直接最適化する。
本稿では,上位レベル(UL)と下位レベル(LL)のサロゲート攻撃とのネスト関係を明示的に再構築する2レベル最適化手法を提案する。
論文 参考訳(メタデータ) (2024-06-04T07:45:27Z) - Improved Techniques for Optimization-Based Jailbreaking on Large Language Models [78.32176751215073]
Greedy Coordinate Gradient (GCG)攻撃の成功は、最適化ベースのジェイルブレイク技術の研究への関心が高まっている。
我々はGCGのような最適化ベースのジェイルブレイクにいくつかの改良(経験的)技術を提案する。
以上の結果から,GCGが最先端のジェイルブレイク攻撃より優れ,100%近い攻撃成功率を達成できる可能性が示唆された。
論文 参考訳(メタデータ) (2024-05-31T17:07:15Z) - Boosting Jailbreak Attack with Momentum [5.047814998088682]
大規模言語モデル(LLM)は様々なタスクで顕著な成功を収めていますが、敵の攻撃に弱いままです。
textbfMomentum textbfAccelerated GtextbfCG(textbfMAC)攻撃を導入する。
論文 参考訳(メタデータ) (2024-05-02T12:18:14Z) - Defending Large Language Models against Jailbreak Attacks via Semantic
Smoothing [107.97160023681184]
適応型大規模言語モデル(LLM)は、ジェイルブレイク攻撃に対して脆弱である。
提案するSEMANTICSMOOTHは,与えられた入力プロンプトのセマンティック変換されたコピーの予測を集約するスムージングベースのディフェンスである。
論文 参考訳(メタデータ) (2024-02-25T20:36:03Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
大規模言語モデル(LLM)は、ジェイルブレイク攻撃に対して脆弱である。
既存のジェイルブレイク法は計算コストがかかる。
我々は、弱々しく強固な脱獄攻撃を提案する。
論文 参考訳(メタデータ) (2024-01-30T18:48:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。