Linking Model Intervention to Causal Interpretation in Model Explanation
- URL: http://arxiv.org/abs/2410.15648v1
- Date: Mon, 21 Oct 2024 05:16:59 GMT
- Title: Linking Model Intervention to Causal Interpretation in Model Explanation
- Authors: Debo Cheng, Ziqi Xu, Jiuyong Li, Lin Liu, Kui Yu, Thuc Duy Le, Jixue Liu,
- Abstract summary: We will study the conditions when an intuitive model intervention effect has a causal interpretation.
This work links the model intervention effect to the causal interpretation of a model.
Experiments on semi-synthetic datasets have been conducted to validate theorems and show the potential for using the model intervention effect for model interpretation.
- Score: 34.21877996496178
- License:
- Abstract: Intervention intuition is often used in model explanation where the intervention effect of a feature on the outcome is quantified by the difference of a model prediction when the feature value is changed from the current value to the baseline value. Such a model intervention effect of a feature is inherently association. In this paper, we will study the conditions when an intuitive model intervention effect has a causal interpretation, i.e., when it indicates whether a feature is a direct cause of the outcome. This work links the model intervention effect to the causal interpretation of a model. Such an interpretation capability is important since it indicates whether a machine learning model is trustworthy to domain experts. The conditions also reveal the limitations of using a model intervention effect for causal interpretation in an environment with unobserved features. Experiments on semi-synthetic datasets have been conducted to validate theorems and show the potential for using the model intervention effect for model interpretation.
Related papers
- Generative Intervention Models for Causal Perturbation Modeling [80.72074987374141]
In many applications, it is a priori unknown which mechanisms of a system are modified by an external perturbation.
We propose a generative intervention model (GIM) that learns to map these perturbation features to distributions over atomic interventions.
arXiv Detail & Related papers (2024-11-21T10:37:57Z) - Counterfactual Generation from Language Models [64.55296662926919]
We show that counterfactual reasoning is conceptually distinct from interventions.
We propose a framework for generating true string counterfactuals.
Our experiments demonstrate that the approach produces meaningful counterfactuals.
arXiv Detail & Related papers (2024-11-11T17:57:30Z) - Estimating the Causal Effects of Natural Logic Features in Transformer-Based NLI Models [16.328341121232484]
We apply causal effect estimation strategies to measure the effect of context interventions.
We investigate robustness to irrelevant changes and sensitivity to impactful changes of Transformers.
arXiv Detail & Related papers (2024-04-03T10:22:35Z) - Causal Analysis for Robust Interpretability of Neural Networks [0.2519906683279152]
We develop a robust interventional-based method to capture cause-effect mechanisms in pre-trained neural networks.
We apply our method to vision models trained on classification tasks.
arXiv Detail & Related papers (2023-05-15T18:37:24Z) - Linking a predictive model to causal effect estimation [21.869233469885856]
This paper first tackles the challenge of estimating the causal effect of any feature (as the treatment) on the outcome w.r.t. a given instance.
The theoretical results naturally link a predictive model to causal effect estimations and imply that a predictive model is causally interpretable.
We use experiments to demonstrate that various types of predictive models, when satisfying the conditions identified in this paper, can estimate the causal effects of features as accurately as state-of-the-art causal effect estimation methods.
arXiv Detail & Related papers (2023-04-10T13:08:16Z) - Deconfounding to Explanation Evaluation in Graph Neural Networks [136.73451468551656]
We argue that a distribution shift exists between the full graph and the subgraph, causing the out-of-distribution problem.
We propose Deconfounded Subgraph Evaluation (DSE) which assesses the causal effect of an explanatory subgraph on the model prediction.
arXiv Detail & Related papers (2022-01-21T18:05:00Z) - Influence Tuning: Demoting Spurious Correlations via Instance
Attribution and Instance-Driven Updates [26.527311287924995]
influence tuning can help deconfounding the model from spurious patterns in data.
We show that in a controlled setup, influence tuning can help deconfounding the model from spurious patterns in data.
arXiv Detail & Related papers (2021-10-07T06:59:46Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Causal Inference with Deep Causal Graphs [0.0]
Parametric causal modelling techniques rarely provide functionality for counterfactual estimation.
Deep Causal Graphs is an abstract specification of the required functionality for a neural network to model causal distributions.
We demonstrate its expressive power in modelling complex interactions and showcase applications to machine learning explainability and fairness.
arXiv Detail & Related papers (2020-06-15T13:03:33Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations.
We propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent factors into causal endogenous ones.
Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy.
arXiv Detail & Related papers (2020-04-18T20:09:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.